期刊文献+

带负顾客和不耐烦顾客的离散时间Geo/G/1重试排队 被引量:4

A discrete-time Geo/G/1 retrial queue with negative customers and impatient customers
原文传递
导出
摘要 考虑了一个带负顾客和不耐烦顾客且重试时间为一般分布的离散时间Geo/G/1重试排队系统.负顾客带走一个正在服务的顾客,而对重试组中的顾客无影响.正顾客到达系统若遇服务器忙则可能进入重试组也可能离开系统.通过对此排队系统的嵌入马氏链进行分析,得到了重试组队长和系统队长的概率母函数.进而得到了一系列重要的排队指标.此外,还推导出了系统的稳态存在条件.以及对无负顾客和不耐烦顾客时的待例进行了分析.最后通过几个具体的数值实例演示了一些参数对系统关键性能指标的影响. We consider a discrete-time Geo/G/1 retrial queue with negative customers and general retrial times. Negative customers will make the customer being in service lost but has no effect to the orbit. When the server is busy, the arriving positive customers either enter the orbit or leave the system. We analyze the Markov chain underlying the considered queueing system. The system state distribution as well as the orbit size and the system size distributions are obtained in terms of their generating functions. These generating functions yield exact expressions for some important performance measures. Besides, the stability condition of the system is derived. Further, the special case of no negative customers and no impatient customers is discussed. Finally, some numerical examples are provided to illustrate the impact of several parameters on some crucial performance characteristics of the system.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第12期2373-2379,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(10971230 10871064) 中南大学博士学位论文创新基金(3960-71131100003)
关键词 离散时间排队 负顾客 不耐烦顾客 马尔可夫链 discrete-time queues negative customers impatient customers Markov chain
  • 相关文献

参考文献11

  • 1Takagi H. Queueing Analysis: A Foundation of Performance Evaluation. Discrete-Time Systems[M]. NorthHolland: Amsterdam, 1993.
  • 2Woodward M E. Communication and Computer Networks: Modelling with Discrete-Time Queues[M]. Los Alamitos, California: IEEE Computer Society Press, 1994.
  • 3Keilson J, Cozzolino J, Young H. A service system with unfilled requests repeated[J]. Operations Research, 1968, 16:1126-1137.
  • 4Yang T, Li H. On the steady-state queue size distribution of the discrete-time Geo/G/1 queue with repeated customers[J]. Queueing Systems, 1995, 21: 199-215.
  • 5Atencia I, Moreno P. A discrete-time Geo/G/1 retrial queue with the server subject to starting failures[J]. Annals of Operation Research, 2006, 141:85-107.
  • 6Artalejo J, Economou A, Gdmez-Corral A. Algorithmic analysis of the Geo/Geo/c retrial queue[J]. European Journal of Operational Research, 2008, 189: 1042-1056.
  • 7Atencia I, Moreno P. A discrete-time Geo/G/1 retrial queue with general retrial times[J]. Queueing Systems, 2004, 48: 5-21.
  • 8Aboul-Hassan A K, Rabia S I, Taboly F A. Performance evaluation of a discrete-time Geo[x]/G/1 retrial queue with general retrial times[J]. Computers and Mathematics with Applications, 2009, 58: 548-557.
  • 9Wu J, Liu Z, Peng Y. A discrete-time Geo/G/1 retrial queue with preemptive resume and collisions[J]. Applied Mathematical Modelling, 2010, 35: 837-847.
  • 10Atencia I, Moreno P. A single-server G-queue in discrete-time with geometrical arrival and service process[J1. Performance Evaluation, 2005, 59: 85-97.

同被引文献32

  • 1李乃文,崔群法,译.运筹学一概率模型应用范例与解法[M].北京:清华大学出版社,2006.
  • 2厉譞,苏强,朱岩.改进EDD策略在门诊排队管理中的应用[J].清华大学学报(自然科学版),2007,47(11):2081-2084. 被引量:3
  • 3Wu C H, Lin J T, Chien, W C. Dynamic production control in parallel processing system underprocess queue time constraints [J]. Computers & Industrial Engineering, 2012,63: 192-203.
  • 4Pandelis Dimitrios G. Optimal control of noncollaborative servers in two-stage tandem queueingsystems [J]. Naval Research Logistics, 2014,61: 435-446.
  • 5OKAN Erhun, KUAROUFEH J P. Optimal control of a two-server queueing system with failures[J]. Probability in the Engineering and Informational Science, 2014,28: 489-527.
  • 6Chen J C, Li Y, Shady B D. Prom value stream mapping toward a lean/sigma continuous improve-ment process: an industry case study [J]. International Journal of Production Research, 2008,48(4):1069-1086.
  • 7Sherif I , Rabia.An Improved Truncation Technique To Analyze A Geo/PH/1 Retrial Queue With Impatient Customers[J].Computers and Operations Research,2014,(46).
  • 8Selvaraju, N Cosmika G . Impatient Customers in An M/M/1 Queue With Single and Multiple Working Vacations[J].Computers & Industri- al Engineering.2013,2(65).
  • 9Chesoong K , Sergey D , O|ga T . Janghyun Baek.Queueing System MAP/PH/N/N + R With Impatient Heterogeneous Customers As A Model Of Call Center[J].Applied Mathematical Modeling.2013,3(37).
  • 10Nir P, Uri Y. Queues With Slow Servers And Impatient Customers[J]. European Journal of Operational Research,2011,201(1).

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部