摘要
考虑了一个带负顾客和不耐烦顾客且重试时间为一般分布的离散时间Geo/G/1重试排队系统.负顾客带走一个正在服务的顾客,而对重试组中的顾客无影响.正顾客到达系统若遇服务器忙则可能进入重试组也可能离开系统.通过对此排队系统的嵌入马氏链进行分析,得到了重试组队长和系统队长的概率母函数.进而得到了一系列重要的排队指标.此外,还推导出了系统的稳态存在条件.以及对无负顾客和不耐烦顾客时的待例进行了分析.最后通过几个具体的数值实例演示了一些参数对系统关键性能指标的影响.
We consider a discrete-time Geo/G/1 retrial queue with negative customers and general retrial times. Negative customers will make the customer being in service lost but has no effect to the orbit. When the server is busy, the arriving positive customers either enter the orbit or leave the system. We analyze the Markov chain underlying the considered queueing system. The system state distribution as well as the orbit size and the system size distributions are obtained in terms of their generating functions. These generating functions yield exact expressions for some important performance measures. Besides, the stability condition of the system is derived. Further, the special case of no negative customers and no impatient customers is discussed. Finally, some numerical examples are provided to illustrate the impact of several parameters on some crucial performance characteristics of the system.
出处
《系统工程理论与实践》
EI
CSSCI
CSCD
北大核心
2011年第12期2373-2379,共7页
Systems Engineering-Theory & Practice
基金
国家自然科学基金(10971230
10871064)
中南大学博士学位论文创新基金(3960-71131100003)
关键词
离散时间排队
负顾客
不耐烦顾客
马尔可夫链
discrete-time queues
negative customers
impatient customers
Markov chain