期刊文献+

椭圆曲线上的信息论安全的可验证秘密共享方案 被引量:10

Information-theoretic secure verifiable secret sharing scheme on elliptic curve group
下载PDF
导出
摘要 基于椭圆曲线上的双线性对技术,构造一种可验证秘密共享方案。该方案的信息率为2/3,与Pederson的方案(Crypto91)及相关方案相比,本方案在相同的安全级别下有较高的信息率,从而提高了秘密共享协议的效率。同时,理论上证明该方案是信息论安全的。最后,将上述方案推广到无可信中心的情况,设计了无可信中心的秘密共享方案。经分析表明,所提方案具有更高的安全性和有效性,能更好地满足应用需求。 Based on the bilinear pair on elliptic curves, a verifiable secret sharing (VSS) and distributed verifiable secret sharing were constructed. The information rate of the scheme is 2/3. Compared with Pederson's scheme (Crypto91) and the related schemes, the scheme is more efficient under the same security level. At the same time, the security of the scheme was proved theoretically. The result reveals that the scheme is information-theoretic security. Finally, the VSS has been extensions to the case without a dealer (or without a trusted center). A distributive verifiable secret sharing based on bilinear pair was proposed. Analysis shows that these schemes are more secure and effective than others, and it can be more applicable in special situation.
出处 《通信学报》 EI CSCD 北大核心 2011年第12期96-102,共7页 Journal on Communications
基金 国家科技部重大专项基金资助项目(2011ZX03005-002) 国家自然科学基金资助项目(60872041 61072066 60963023 60970143 61100230 61100233) 中央高校基本科研业务费基金资助项目(JY10000903001 JY10000901034)~~
关键词 秘密共享 可验证的秘密共享 椭圆曲线离散对数 双线性对 BDH假设 secret sharing verifiable secret sharing elliptic curves discrete logarithm bilinear pairing Diffie-Hellman assumption
  • 相关文献

参考文献25

  • 1SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612-613.
  • 2BLAKLEY G. Safeguarding cryptographic keys[A]. Proceedings of the National Computer Conference [C]. AFIPS, 1979.313-317.
  • 3STADLER M. Publicly verifiable secret sharing[A]. CryptologyEUROCRYPT'96[C]. Berlin, 1996. 190-199.
  • 4ASMUTH C, BLOOM J. A modular approach to key safeguarding[J]. IEEE Trans on Information Theory, 1983, 29(2): 208-210.
  • 5HWANG R J, CHANG C C. An improved threshold scheme based on modular arithmetic[J]. Journal of Information Science and Engineering, 1999, 15(5): 691-699.
  • 6AH O, ULLMAN J. The Design and Analysis of Computer Algorithms[R]. Reading, MA: Addison-Wesley, 1974.
  • 7CHAN C W, CHANG C C. A scheme for threshold multi-secret sharing[J]. Applied Mathematics and Computation, 2005, 166(1): 1-14.
  • 8CHANG T Y, HWANG M S, et al. An improvement on the LinWu (t, n) threshold verifiable multi-secret sharing scheme[J]. Applied Mathematics and Computation, 2005, 163(1): 169-178.
  • 9CHOR B, DOLDWASSER S, MICALI S, et al. Verifiable secret sharing and achieving simultaneity in the presence of faults[A]. Proc 26th IEEE Symposium on Foundations of Computer Sciences (FOCS'85)[C]. Los Angeles, 1985.383-395.
  • 10FELDMAN E A practical scheme for non-interactive verifiable secret sharing[A]. Proc 28th IEEE Symposium on Foundations of Computer Science (FOCS' 87) [C]. 1987. 427-437.

二级参考文献26

共引文献25

同被引文献101

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部