期刊文献+

近似概念格及其增量构造算法研究 被引量:5

Approximation concept lattice and incremental constructing algorithm
下载PDF
导出
摘要 针对传统概念格处理不完备信息的局限,给出了处理形式背景有缺值现象的概念格扩展模型———近似概念格,在此基础上提出改进的概念格增量构造算法。该算法引入哈希技术和最近父节点的增量计算方法,从加速定位生成元和更新边这两个关键过程改进Godin算法。采用随机数据集设计实验,实验表明,改进的算法可有效提高对形式背景有缺值现象概念格的建格效率,尤其是对数据规模和发生关系概率较大的数据集,算法的高效性更明显。 The classic concept lattice is limited in incomplete information.In order to solve this limitation,presented a new concept lattice model-approximation concept lattice,witch could be used to deal with missing-value in formal context.On that basis,it designed an improved incremental constructing algorithm based on hash technique and incremental computation of nearest father nodes.Extensive experiments on the random data set demonstrate the improvements of the construction efficiency,especially for the data sets with large scale and density.
出处 《计算机应用研究》 CSCD 北大核心 2012年第1期25-27,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(61050004) 河南省重大科技攻关项目(102102310058) 河南省基础与前沿项目(082300410270)
关键词 近似概念格 形式概念分析 不完备形式背景 增量构造算法 approximation concept lattice formal concept analysis incomplete formal context incremental constructing algorithm
  • 相关文献

参考文献11

  • 1WILLE R. Restructuring lattice theory:an approach based on hierarchies of concepts [ M ]//Proc of the 7th ICFCA' 09. Berlin : Spninger- Verlag ,2009 : 314- 339.
  • 2YADAV B S. A conceptual model for user-centered quality information retrievalon the world wide Web [ J]. Journal of Intelligent Information Systems, 2010, 35(1 ): 91-121.
  • 3TONELLA P. Formal concept analysis in software engineering [ C ]// Proc of the 26th International Conference on Software Engineering. Washington DC : IEEE Computer Society,2004 : 743- 744.
  • 4POELMANS J, ELZINGA P, VIAENE S,et al. Formal concept analysis in knowledge discovery : a survey [ C ]//Proc of the 18th International Conference on Conceptual Structures. Berlin: Springer-Verlag, 2010 : 139-153.
  • 5FORMICA A . Ontology - based concept similarity in formal concept analysis[ J]. Information Sciences,2006, 176(18) : 2624-2641.
  • 6陈庆燕.Bordat概念格构造算法的改进[J].计算机工程与应用,2010,46(35):33-35. 被引量:8
  • 7LINDIG C. Fast concept analysis [ M ]//STUMME G. Working with Conceptual Structures- Contributions to ICCS2000. Aachen: Shaker Verlag,2000:152-161.
  • 8GODIN R. Incremental concept formation algorithm based on Galois (concept) lattice [J]. Computational Intelligence, 1995, 11 ( 2 ) : 246-267.
  • 9谢志鹏,刘宗田.概念格的快速渐进式构造算法[J].计算机学报,2002,25(5):490-496. 被引量:120
  • 10蒋义勇,张继福,张素兰.基于链表结构的概念格渐进式构造[J].计算机工程与应用,2007,43(11):178-180. 被引量:11

二级参考文献30

  • 1沈夏炯,韩道军,刘宗田,马骏.概念格构造算法的改进[J].计算机工程与应用,2004,40(24):100-103. 被引量:26
  • 2GANTERB,等.形式概念分析[M].马垣,等译.北京:科学出版社,2007.
  • 3Ganter B. Two Basic Algorithms in Concept Analysis[R]. Darmstadt, Germany: Yechnische Hochschule, Tech. Rep.: 831, 1984.
  • 4Godin R, Missaoui R, Alaoui H. Incremental Concept Formation Algorithms Based on Galois Lattices[J]. Computation Intelligence, 1995, 11(2): 243-250.
  • 5Kuznetsov S O,Obedkov S A.Comparing performance of algorithms for generating concept lattices[J].Joumal of Experimental and Theoretical Artificial Intelligence,2002,14(23) : 189-216.
  • 6Ganter B ,Wille R.Formal concept analysis[M]//Mathematical Foundation.B erlin: Springer-Verlag, 1999.
  • 7Priss U.Formal concept analysis in information science[J].Annual Review of Information Science and Technology, 2006,40 : 521-543.
  • 8Bordat J P.Calcul pratique du treillis de Galois d'une eorrespon- dence[J].Match Sci Hum, 1986,96 : 31-47.
  • 9Carpineto C, Romano G. Information retrieval through hybrid navigation of lattice representations. International Journal of Human-Computer Studies, 1996, 45: 553-578
  • 10Carpineto C, Romano G. A lattice conceptual clustering system and its application to browsing retrieval. Machine Learning, 1996, 24(2):95-122

共引文献137

同被引文献49

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部