期刊文献+

基于多特征融合的汉语情感分类研究 被引量:6

Classification approach of Chinese texts sentiment based on integrated features
下载PDF
导出
摘要 中文情感分类一般分成基于情感词典和基于特征分类两种方法进行研究,但没有考虑过将两种方法得到的特征进行融合来提高分类效果。基于特征分类的方法忽视了特征词在情感词典的褒贬性以及词倾向性的强弱。用基于特征分类方法得到的文本特征建立朴素贝叶斯模型,根据特征词在情感词典中的褒贬性及其通过点对互信息方法得到的词性强弱调整情感词的正负后验概率权重,实现两种特征的融合,提高分类效果并降低了特征维数。 Generally the approach of Chinese text sentiment classification was based on the sentiment lexicon or the feature-selection,rather than the integration of the both involved to improve the classification effects.Feature-selection method ignored the emotional tendencies and value of words in the sentiment dictionary.This paper adopted the feature from the method of feature-selection to construct the naive Bayesian model,according to the emotional tendency of the feature in the sentiment dictionary and its value from point mutual information.And adjusted the weights of the positive and negative emotion word posterior probability to achieve the integration,improved the classification results and reduced the feature dimension.
作者 钟将 邓时滔
出处 《计算机应用研究》 CSCD 北大核心 2012年第1期98-100,共3页 Application Research of Computers
基金 国家"211工程"三期建设项目(S-10218)
关键词 文本情感分类 情感词典 点对互信息 特征选择 朴素贝叶斯 text sentiment classification semantic lexicon point wise mutual information feature-selection naive Bayesian
  • 相关文献

参考文献9

  • 1赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. 被引量:541
  • 2HU Ming-qing, LIU Bing. Mining and summarizing customer reviews [ C]//Proc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2004 : 168-177.
  • 3王素格,杨安娜,李德玉.基于汉语情感词表的句子情感倾向分类研究[J].计算机工程与应用,2009,45(24):153-155. 被引量:34
  • 4PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? sentiment classification using machine learning techniques [ C ]//Proc of Conference on Empirical Methods in Natural Language Processing. 2002: 79- 86.
  • 5王素格,魏英.停用词表对中文文本情感分类的影响[J].情报学报,2008,27(2):175-179. 被引量:22
  • 6知网[EB/OL].[2009-03-12].http://www.keenage.com.
  • 7YANG Yi-ming, PEDERSEN J O. A comparative study on feature selection in text categorization[ C]//Proc of the 14th International Conference on Machine Learning. San Francisco:Morgan Kaufmann Publisher, 1997 : 412-420.
  • 8唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:136
  • 9谭松波.中文情感挖掘语料ChenSentiCorp[EB/OL](2010-06-29)[2011-04-22].http://www.searchforumrg.en/tan-songbo/corpus-senti.htm.

二级参考文献38

  • 1顾益军,樊孝忠,王建华,汪涛,黄维金.中文停用词表的自动选取[J].北京理工大学学报,2005,25(4):337-340. 被引量:35
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3Wiebe J,Wilson T,Bruce R,et al.Learning subjective language[J]. Computational Linguistics, 2004,30(3 ) : 277-308.
  • 4Yu Hong,Hatzivassiloglou V.Towards answering opinion questions[C]// Proceeding of EMNLP, 2003.
  • 5Yi J,Nasukawa T,Bunescu R,et al.Sentiment analyzer:Extracting sentiments about a given topic using natural language processing techniques[C]//Proceeding of the Third IEEE International Conference on Data Mining,2003.
  • 6Hu Ming--qing,Liu BingaMining and summarizing customer reviews[C]// Proceedings of the Tenth ACM SIGKDD,2004:168-177.
  • 7Wang Chao,Lu Jie,Zhang Guang-quan.A semantic classification approach for online product reviews[C]//Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence(W/' 5) ,2005.
  • 8HowNet[R/OL].HowNet's Home Page.http://www.keenage.com.
  • 9王根,赵军.基于多重冗余标记CRFs的句子情感分析研究[J].中文信息学报,2007,21(5):51-55. 被引量:32
  • 10Franco Salvetti, Stephen Lewis, Christoph Reichenbach. Automatic Opinion Polarity Classification of Movie Reviews[J]. Colorado Research in Linguistics, 2004, Volume 17, Issue 1.

共引文献692

同被引文献75

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部