摘要
几何约束问题可以等价为求解非线性方程组问题。约束问题可以转化为一个优化问题。采用基于细胞膜优化算法来求解该问题。受细胞膜物质转运方式的启发,把物质分为三种:脂溶性物质、高浓度非脂溶性物质和低浓度非脂溶性物质。从中提取出优化模型,使用细胞膜优化算法(CMO)来求解几何约束问题。实验表明,该方法可以提高几何约束求解的效率和收敛性。
Geometric constraint problem is equivalent to the problem of solving a set of nonlinear equations substantially. The constraint problem can be transformed to an optimization n problem. The problem with cell membrane optimization could be solved. Inspired by membrane material transport, the material was divided into three types: fat-soluble substances, high concentrations non-fat-soluble substances and low concentrations non-fat-soluble substances. The optimization model was extracted from and the cell optimization (CMO) was used to solve geometric constraint problems. The experiment shows that it can improve the geometric constraint solving efficiency and possess better convergence property than the compared algorithms.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2012年第1期120-122,共3页
Journal of System Simulation
基金
中央高校基本科研业务费专项资金(N100404002)
地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2011K004)
南京大学计算机软件新技术国家重点实验室开放课题基金资助(KFKT2011B14)
关键词
几何约束求解
细胞膜优化算法
全局优化
智能计算
geometric constraint solving
cell membrane optimization
global optimization
intelligent computing