期刊文献+

基于细胞膜优化算法的几何约束求解 被引量:3

Geometric Constraint Solving Based on Cell Membrane Optimization
下载PDF
导出
摘要 几何约束问题可以等价为求解非线性方程组问题。约束问题可以转化为一个优化问题。采用基于细胞膜优化算法来求解该问题。受细胞膜物质转运方式的启发,把物质分为三种:脂溶性物质、高浓度非脂溶性物质和低浓度非脂溶性物质。从中提取出优化模型,使用细胞膜优化算法(CMO)来求解几何约束问题。实验表明,该方法可以提高几何约束求解的效率和收敛性。 Geometric constraint problem is equivalent to the problem of solving a set of nonlinear equations substantially. The constraint problem can be transformed to an optimization n problem. The problem with cell membrane optimization could be solved. Inspired by membrane material transport, the material was divided into three types: fat-soluble substances, high concentrations non-fat-soluble substances and low concentrations non-fat-soluble substances. The optimization model was extracted from and the cell optimization (CMO) was used to solve geometric constraint problems. The experiment shows that it can improve the geometric constraint solving efficiency and possess better convergence property than the compared algorithms.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第1期120-122,共3页 Journal of System Simulation
基金 中央高校基本科研业务费专项资金(N100404002) 地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2011K004) 南京大学计算机软件新技术国家重点实验室开放课题基金资助(KFKT2011B14)
关键词 几何约束求解 细胞膜优化算法 全局优化 智能计算 geometric constraint solving cell membrane optimization global optimization intelligent computing
  • 相关文献

参考文献10

  • 1Holland J H. Adaptation in natural and artificial systems [M]. Cambridge, USA: MIT Press, 1975.
  • 2Colomi A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [C]//Proc. of European Conference on Artificial Life. Paris, France: Elsevier, 1991 : 134-142.
  • 3Kennedy J, Eberhart R. Particle swarm optimization [C]// Proc. of IEEE Conference on Neural Networks, Perth, Australia. USA: IEEE Press, 1995: 1942-1948.
  • 4Eusuffrn M, Lansey K E. Optimization of water distribution network design using shuttled frog leaping algorithm [J]. Journal of Water Resources Planning and Management (S0733-9496), 2003, 129(3): 210-225.
  • 5Karaboga D. An idea based on honey bee swarm for numerical optimization [R]// Technical Report-TR06. Turkey: Erciyes University, 2005.
  • 6谭世恒,余卫宇.一种新型的全局优化算法——细胞膜优化算法[J].计算机应用研究,2011,28(2):455-457. 被引量:15
  • 7刘生礼,唐敏,董金祥.两种空间约束求解算法[J].计算机辅助设计与图形学学报,2003,15(8):1021-1029. 被引量:9
  • 8曹春红,张斌,李文辉.基于复合粒子群算法的几何约束求解技术研究[J].中国图象图形学报,2007,12(4):713-717. 被引量:9
  • 9曹春红,王利民,赵大哲.基于离散元胞蚂蚁算法的几何约束求解技术研究[J].电子学报,2011,39(5):1127-1130. 被引量:10
  • 10Cao Chunhong, Zhang Bin, Wang Limin, Song Jiali, Li Wenhui. The Geometric Constraint Based on the Immune Genetic Algorithm [J]. Journal of Computational Information Systems (S1553-9105), 2006, 2(2): 787-794.

二级参考文献44

  • 1葛红霞,祝会兵,戴世强.智能交通系统的元胞自动机交通流模型[J].物理学报,2005,54(10):4621-4626. 被引量:31
  • 2朱刚,马良.基于元胞自动机的物流系统选址模型[J].上海理工大学学报,2006,28(1):19-22. 被引量:12
  • 3HOLLAND J H. Adaptation in natural and artificial systems[M].Cambridge: MIT Press,1975.
  • 4COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies[C]//Proc of European Conference on Artificial Life.1991: 134-142.
  • 5KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proc of IEEE Conference on Neural Networks.Perth: IEEE Press,1995:1942-1948.
  • 6EUSUFFM M, LANSEY K E. Optimization of water distribution network design using shuffled frog leaping algorithm[J].Journal of Water Resources Planning and Management,2003,129(3):210-225.
  • 7KARABOGA D. An idea based on honey bee swarm for numerical optimization, Technical Report-TR06[R].[S.l.] :Erciyes Universtiy, 2005.
  • 8Wolfram S. Theory and Application of Cellular Automata Singapore[ M]. The World Scientific Publishing Co, Ltd, 1986.
  • 9Bouma W, Fudos I, Hoffmann C M, et al. A geometric constraint solver [J]. Computer-Aided Design, 1995, 27(6):487 -- 501.
  • 10Crippen G M, Havel T F. Distance Geometry and Molecular Conformation [M]. New York: Research Studies Press, 1988.

共引文献36

同被引文献31

  • 1Garey M R, Johonson D S. Computers and Intractablity : A Guide to the theory of NP completeness[ M ]. San Francisco : Freeman, 1979.
  • 2Lian Z G, Gu X S ,Jiao B. A novel particle swarm optimization algorithm for permutation flow shop scheduling to minimize makespan [ J ]. Cha- os, Solitons and Fractals ,2008,35 ( 5 ) : 851 - 861.
  • 3Sha D Y, Hsu C Y. A hybrid particle swarm optimization for job shop scheduling problem [ J ]. Comput. Ind. Eng. ,2006,51:791 - 808.
  • 4Tasgetiren M F, Liang Y C, Sevkli M, et al. A particle swarm optimiza- tion algorithm for makespan and total flow time minimization in the per- mutation flow shop sequencing problem[ J ]. European Journal of Oper- ational Research ,2007,177 ( 3 ) : 1930 - 1947.
  • 5Kennedy J, Eberhart R. Particle Swarm Optimization [ C ]//Proc. of IEEE International Conference on Neural Networks ( ICNN), VOLIV, Perth ,Australia, 1995 : 1942 - 1948.
  • 6章毓晋.图像工程(中册)-图像分析[M].北京:清华大学出版社,2012,73-201.
  • 7曹承志,张坤,郑海英,刘本伟,毛春雷.基于人工鱼群算法的BP神经网络速度辨识器[J].系统仿真学报,2009,21(4):1047-1050. 被引量:25
  • 8谭世恒,余卫宇.一种新型的全局优化算法——细胞膜优化算法[J].计算机应用研究,2011,28(2):455-457. 被引量:15
  • 9贾强,季仲梅,王建辉.改进的人工鱼群算法及其在无线定位中的应用[J].计算机应用研究,2011,28(6):2147-2150. 被引量:12
  • 10赵海峰,姚丽莎,罗斌.改进的人工鱼群算法和Powell法结合的医学图像配准[J].西安交通大学学报,2011,45(4):46-52. 被引量:21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部