期刊文献+

基于能量代谢分析的S-腺苷蛋氨酸和谷胱甘肽联合高产方法 被引量:5

Strategy for enhanced co-production of S-adenosylmethionine and glutathione by Candida utilis based on energy metabolic analysis
下载PDF
导出
摘要 采用能量代谢分析方法,以S-腺苷蛋氨酸和谷胱甘肽联产发酵过程中能量代谢的关键物质ATP的水平变化为指导,结合L-半胱氨酸的适时添加策略,实现了S-腺苷蛋氨酸和谷胱甘肽联产发酵的进一步高产。在ATP水平指导的L-半胱氨酸添加策略下,实现了胞内ATP的有效利用,且分批培养和流加培养时S-腺苷蛋氨酸和谷胱甘肽的联产量达到584.7mg.L-1和1004.4mg.L-1,分别比对照提高了27.1%和26.4%。该研究结果为类似耗能合成有用化学品的联产发酵及其高产提供了可行的发酵过程优化策略。 The concentrations of intracellular co-factors,such as ATP,ADP,NADH and NAD+ vital for energy metabolism within Candida utilis CCTCC M 209298 were measured by HPLC.Based on the levels of co-factors,especially ATP during batch cultivation of C.utilis CCTCC M 209298,we developed a novel culture strategy of L-cysteine addition followed by ATP accumulation(21 h) instead of cell growth ceased(15 h) for further enhanced co-production of S-adenosylmethionine and glutathione using energy metabolic analysis.Subsequently,we combined this strategy with high-cell-density culture of C.utilis CCTCC M 209298,and both high biomass and high co-production of S-adenosylmethionine and glutathione were achieved.The culture strategy under the guidance of ATP concentration was proved to be efficient in terms of full utilization of intracellular residual ATP,together with improvement of co-production of S-adenosylmethionine and glutathione,and the co-production of S-adenosylmethionine and glutathione attained 584.7 mg·L-1 and 1004.4 mg·L-1 from batch and fed-batch fermentation,which were 27.1% and 26.4% higher than the controls,respectively.The results presented in this study provide a feasible strategy for optimization of fermentative processes for enhancing the co-production of analogous useful chemicals biosynthesized by consuming energy.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第1期223-229,共7页 CIESC Journal
基金 国家自然科学基金项目(20906065) 江苏省属高校自然科学研究项目(09KJB530009)~~
关键词 S-腺苷蛋氨酸 谷胱甘肽 ATP 产朊假丝酵母 联产发酵 S-adenosylmethionine glutathione ATP Candida utilis co-production
  • 相关文献

参考文献22

  • 1Mato J M, Alvarez L, Ortiz P, Pajares M A.S- adenosylmethionine synthesis: molecular mechanisms and clinical implieal:ions [J]. Pharmacol. Ther. , 1997, 77 (3): 265-280.
  • 2Palamara A T, Perno C F, Aquaro S, Bue M C, Dini L, Garaci E. Glutathione inhibits HIV replication by acting at late stages of the virus life cycle [J]. AIDS Res. Hum. Retroviruses, 1996, 12 (16): 1537-1541.
  • 3Meister A. Antioxidant functions of glutathione[J]. Life Chem. Rep. , 1994, 12 (1): 23-27.
  • 4Shiozaki S, Shimizu S, Yamada H. Production of S- adenosyl-1-methionine by Saccharomyces sake [J]. J. Biotechnol. , 1986, 4 (6):345-354.
  • 5Li Y, Wei G, Chen J. Glutathione: review on bioteehnologieal production [ J ]. Appl. Microbiol. Biotechnol., 2004, 66 (3): 233-242.
  • 6Hu H, Qian J, Chu J, Wang Y, Zhuang Y, Zhang S. Optimization of L-methionine feeding strategy for improving S-adenosyl-L-me thionine production by methionine adenosyltransferase overexpressed Pichia pastoris [J]. Appl. Microbiol. Biotechnol. , 2009, 83 (6) : 1105-1114.
  • 7Nisamedtinov I, Kevvai K, Orumets K, Rautio J J, Paalme T. Glutathione accumulation in ethanol-star fed- batch culture of Saccharomyces cerevisiae with a switch to eysteine feeding [J]. Appl. Microbiol. Biotechnol. , 2010, 87:175-183.
  • 8Brosnan J T, Brosnan M E, Bertolo R F P, Brunton J A. Methionine: a :metabolically unique amino acid [J]. Livestock Sci. 2007, 112 (1): 2-7.
  • 9邵娜,卫功元,葛晓光,聂敏.紫外线γ射线复合诱变筛选S-腺苷甲硫氨酸和谷胱甘肽联产发酵菌株[J].辐射研究与辐射工艺学报,2010,28(2):107-113. 被引量:11
  • 10ShaoN, Wang D, Wei G, Zhang Q, Ge X G, Nie M. Screening of Candida utilis and medium optimization for the co-production of S-adenosylmethionine and glutathione [J]. Korean J. Chem. Eng. , 2010, 27 (6): 1847-1853.

二级参考文献11

共引文献10

同被引文献51

  • 1陈坚,卫功元,李寅,堵国成.微生物发酵法生产谷胱甘肽[J].无锡轻工大学学报(食品与生物技术),2004,23(5):104-110. 被引量:21
  • 2王一红,冯家力,潘振球,方学新,李帮锐.液相色谱-质谱/质谱联用技术分析18种游离氨基酸[J].中国卫生检验杂志,2006,16(2):161-163. 被引量:42
  • 3卫功元,李寅,堵国成,陈坚.产朊假丝酵母分批发酵生产谷胱甘肽的代谢通量分析[J].化工学报,2006,57(6):1410-1417. 被引量:16
  • 4Mato J M,Alvarez L,Ortiz P,et al.S-adenosylmethioninesynthesis:molecular mechanisms and clinical implications.Pharmacology&Therapeutics,1997,77(3):265-280.
  • 5Li Y,Wei G Y,Chen J.Glutathione:a review onbiotechnological production.Applied Microbiology andBiotechnology,2004,66(3):233-242.
  • 6Shiozaki S,Shimizu S,Yamada H.Production of S-adenosyl-l-methionine by Saccharomyces sake.Journal of Biotechnology,1986,4(6):345-354.
  • 7Brosnan J T,Brosnan M E,Bertolo R F P,et al.Methionine:ametabolically unique amino acid.Livestock Science,2007,112(1):2-7.
  • 8Liang G,Liao X,Du G,et al.Elevated glutathione productionby adding precursor amino acids coupled with ATP in high celldensity cultivation of Candida utilis.Journal of AppliedMicrobiology,2008,105(5):1432-1440.
  • 9Zhou J,Liu L,Shi Z,et al.ATP in current biotechnology:regulation,application and perspectives.BiotechnologyAdvance,2009,27(1):94-101.
  • 10Zhou J,Liu L,Chen J.Improved ATP supply enhances acidtolerance of Candida glabrata during pyruvic acid production.Journal of Applied Microbiology,2011,110(1):44-53.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部