期刊文献+

基于ICA和FCM的多时相SAR图像变化检测 被引量:2

Change Detection on Multi-temporal SAR Images Based on ICA and FCM
下载PDF
导出
摘要 针对多时相合成孔径雷达(Synthetic Aperture Radar,SAR)图像提出了一种非监督的变化检测方法,首先利用独立成分分析(Independent Component Analysis,ICA)抑制相干斑噪声和减少混合像元,提高图像的分类性能。然后对独立分量图像构造差值图像进行非监督的变化检测,最后采用加入空间邻域信息的模糊C-均值聚类(Fuzzy C-Means)方法把差异图像分为变化类和非变化类,以此克服需要选择统计模型的影响。实验结果证实了该算法能有效抑制了变化检测中的虚警。 In this paper, a novel unsupervised change detection scheme is presented to find changes in two registered Synthetic Aperture Radar (SAR) images acquired at different times. Firstly, a method based on Independent Component Analysis (ICA) is proposed to reduce speckle and mixed pixels in SAR images. It can improve the performance of image classification. Then, differencing image are extracted through ICA of SAR images to carry out unsupervised change detection. In order to overcome the limitations imposed by the need of selecting a statistical model for differencing image and considering the spatial-contextual information in the differencing image , the fuzzy clustering algorithm is used in to cluster the two groups of pixels belonging to the "change" and "no change" classes (binary mapping). Experimental results show that the proposed approach can suppress false alarms of changedetection process.
出处 《电视技术》 北大核心 2012年第1期34-36,40,共4页 Video Engineering
关键词 非监督变化检测 独立成分分析 模糊C均值聚类 SAR图像 unsupervised change detection ICA fuzzy clustering SAR images
  • 相关文献

参考文献7

  • 1BRUZZONE L,SERPICO S B. An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images[J]. IEEE Trans. Geosci. Remote Sensing,1997,35 (7) :858-867.
  • 2BOVOLO F, BRUZZONE L A split-based approach to unsupervised change detection in large size multitemporal i mages: application to Tsunami-damage assessment [ J ]. IEEE Trans. Geosci. Remote Sens. ,2007, 45(6) :1658-1671.
  • 3RADKE R J ,ANDRA S,AL-KOFAHI O,et al. Image change detection algorithms: a systematic survey[ J ]. 1EEE Trans. linage Process. ,2005, 14(3) :294-307.
  • 4GHOSH S,MISHRA N S,GHOSH A. Unsupervised change detection ofremotely sensed images using fuzzy clustering[ C ]//Seventh International Conference on Advances in Pattern Recognition. [ S. l. ] : IEEE Press, 2009 : 385 -388.
  • 5曹恒智,余先川,张立保.基于SL-ICA算法的SAR图像混合像元分解[J].遥感学报,2009,13(2):217-223. 被引量:5
  • 6HYVARINEN A. Fast and robust fixed-point algorithms for independentcomponent analysis [ J ]. IEEE Trans. Neural Networks, 1999, 10 ( 3 ) : 626-634.
  • 7于剑.论模糊C均值算法的模糊指标[J].计算机学报,2003,26(8):968-973. 被引量:97

二级参考文献21

  • 1邵美珍,邓广林,徐希孺.基于主成分分析的混合象元分解[J].中国空间科学技术,1989,9(5):63-68. 被引量:8
  • 2许卫东,尹球,匡定波.小波变换在高光谱决策树分类中的应用研究[J].遥感学报,2006,10(2):204-210. 被引量:6
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum Press, 1981.
  • 4Pal N R, Bezdek J C. On cluster validity for the fuzzy c-mean model. IEEE Transactions on Fuzzy Systems, 1995,3 (3): 370-379.
  • 5Fadili M J, Ruan S, Bloyet D, Mayoyer B. On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Medical Image Analysis,2001,5(1) :55-67.
  • 6Yu Jian,Cheng Qian-Sheng, Huang Hou-Kuan. On weighting exponent of the fuzzy c-means model. In: Proceedings of ICYCS2001, Hangzhou, 2001, II : 631- 633.
  • 7Bezdek J C, Hathaway R J, Sabin M J, Tucker W. Convergence theory for fuzzy c-means: Counter-examples and repairs.IEEE Transactions on SMC, 1987,17(5): 873-877.
  • 8Choe H,Jordan J B. On the optimal choice of parameters in a fuzzy c-means algorithm. In: Proceedings of IEEE International Conference on Fuzzy Systems, 1992. 349-354.
  • 9Yi Shen, Hong Shi, Jian Qiu-Zhang. Improvement and optimization of a fuzzy c-means clustering algorithm. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001.
  • 10Tucker WT. Couterexamples to the convergence theorem for fuzzy ISODATA clustering algorithm. In: Bezdek J C ed. The Analysis of fuzzy Information, Boca Raton, FL: CRC Press,1987, 3:110-117.

共引文献100

同被引文献26

  • 1潘卫华,陈家金,张春桂,林晶.福建沿海水域互花米草蔓延的动态监测分析[J].中国农业气象,2011,32(S1):174-177. 被引量:7
  • 2张燕昆,刘重庆.基于核独立成分分析的人脸识别[J].光学技术,2004,30(5):613-615. 被引量:6
  • 3孙飒梅.三都湾互花米草的遥感监测[J].台湾海峡,2005,24(2):223-227. 被引量:22
  • 4黄华梅,张利权.上海九段沙互花米草种群动态遥感研究[J].植物生态学报,2007,31(1):75-82. 被引量:19
  • 5JUTIEN C, HERAULT J. Independent component analysis versus PCA [ EB/OL]. [ 2011 - 12 - 15 ]. http://www, gmw. rug. nl/- stegeman/ Stegenaan% 20-% 20Leiden% 20PCA% 201CA% 20Parafac% 20talk. pdf.
  • 6BARTLETY M S, MOVELLAN J R, SEJNOWSKI T J. Face recognition by independent component analysis [ J 1. IEEE Trans. Neural Net-works, 2002,13(6) :1450-1464.
  • 7YANG M H. Face recognition using kernel methods [ J ]. Advances in Neural Information Processing Systems ,2002,14:215-220.
  • 8VAPNIK V N. An overview of statistical learning theory [ J ] . IEEE Trans. Neural Networks, 1999,10 ( 5 ) :988-999.
  • 9KIRBY M, SIROVICH L. Application of the KL procedure for the charac- terization of human faces[ J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1990,12 ( 1 ) : 103-108.
  • 10SCHOLKOPF B,SMOLA A J. Learning with Kernels[ M]. Britain:The MIT Press ,2001:45-48.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部