期刊文献+

基于轨迹分析的交通目标异常行为识别 被引量:5

Traffic Object's Abnormal Behavior Recognition Based on Trajectory Analysis
下载PDF
导出
摘要 针对交通监控中运动目标的异常行为识别问题,提出一种基于轨迹分析的异常行为识别方法。首先,引入目标的空间位置、运动速度、运动方向和大小尺寸等特征参数对轨迹进行描述和聚类,以提高对目标轨迹的区分和识别能力;然后,提出一种行为识别数据库的建立和调用方法,并以实际交通场景为例,详细说明了数据库的建立和调用过程;最后,采用基于Bayes最优化的方法对轨迹进行联合匹配和边缘匹配,并根据匹配情况调用行为识别数据库对目标行为进行识别。实验结果表明,该方法切实有效,具有一定的实际应用价值。 In view of the problems of recognizing moving object's abnormal behavior on traffic surveillance, an algorithm on recognizing abnormal behav- iors based on trajectory analysis is proposed in this paper. Firstly, four parameters of the object such as space coordinates, velocity, direction and size, are introduced to describe and cluster the trajectories in order to improve the capability of distinguishing and recognizing different objects' trajectories. Secondly, a method of establishing and calling the database on behavior recognizing is presented in this paper, and an actual traffic scene is taken as an example which explains the establishment and calling process of the database in detail. Finally, a method based on Bayes optimization is adopted to match the trajectory, including union match and edge match, and the database is called according to the match situation to identify the object's behavior. The experimental results show that this method is effective, and has some practical value.
出处 《电视技术》 北大核心 2012年第1期106-112,共7页 Video Engineering
基金 中国博士后科学基金项目(20100471838) 陕西省自然科学基金项目(2010JM8014)
关键词 轨迹分析 交通监控 异常行为识别 行为识别数据库 Bayes最优化 trajectory analysis traffic surveillance abnormal behavior recognition behavior recognition database Bayes optimization
  • 相关文献

参考文献4

  • 1杨俊,王润生.智能化交通视频图像处理技术研究[J].电视技术,2006,30(9):74-77. 被引量:14
  • 2LOU J,LIU Q,TAN T,et al. Semantic interpretation of object activities in a surveillance system [ C ]//Prec. 16th International Conference on Pattern Recognition. [ S. l. ] :IEEE Press ,2002,3:777-780.
  • 3潘奇明,周文辉,程咏梅.运动目标轨迹分类与识别[J].火力与指挥控制,2009,34(11):79-83. 被引量:9
  • 4LIU Huaping,SUN Fuchun, HE Kezhong. Symmetry-aided particle filter for vehicle tracking[ C ]//Proc. 2007 IEEE International Conference on Robotics and Automation. Roma: IEEE Press ,2007:4633-4638.

二级参考文献28

  • 1潘奇明,程咏梅,杨涛,潘泉,赵春晖.真实场景运动目标轨迹有效性判断与自动聚类算法研究[J].计算机应用研究,2007,24(4):158-160. 被引量:9
  • 2Junghye M, Rangachar K. Activity Recognition based on Multiple Motion Trajectories,Proc[C]// IEEE of the 17th International Conference on Pattern Recognition(ICPR'04)1051-4651/04,2004.
  • 3Faisal B, Ashfaq K, Dan S. Automatic Object Trajectory-Based Motion Recognition using Gaussian Mixture Models[C]//IEEE International Conference on Multimedia & Expt (ICME 2005), 2005. Amsterdam, The Netherlands.
  • 4Owens J, Hunter A. Application of the Self- Organizing Map to Trajectory Classification [C]// In proc. of the third IEEE International Workshop on Visual Surveillance, 2000.
  • 5Hu W M,Xie ,Tan T N. Senior Member IEEE, A Hierarchical Self-Organizing Approach for Learning the Patterns of Motion Trajectories [J]. IEEE Transactions on Neural Networks, 2004,15 (1) : 35- 38.
  • 6Fatih P. Trajectory Distance Metric Using Hidden Markov Model based Representation [ M ]. Mitsubishi Electric Research Laboratories Cambridge, MA 02139,USA,2004.
  • 7Johnson N,Hogg D C. Learning the Distribution of Object Trajectories for Event Recognition [M]. Image and Vision Computing, 1996,14 : 609-615.
  • 8Buzan D, Sclaroff S, KoUios G. Extraction and Clustering of Motion Trajectories in Video [M]. Boston University Computer Science Tech, 2004.
  • 9Orina S, O'Hare R, Reilly R. Online Trajectory Classification[M]. P. M. A. Sloot et al. (Eds.): ICCS 2003.
  • 10MICHALOPOULOS P.Vehicle detection through video image processing:the AUTOSCOPE system[J].IEEE Transaction on Vehicle Technology.1991(40):21-29.

共引文献21

同被引文献50

  • 1潘奇明,程咏梅,杨涛,潘泉,赵春晖.真实场景运动目标轨迹有效性判断与自动聚类算法研究[J].计算机应用研究,2007,24(4):158-160. 被引量:9
  • 2黄卫 陈里得.智能运输系统(ITS)概述[M].北京:人民交通出版社,2001..
  • 3HOOGENDOORN S P,VAN ZUYLEN H J,SCHREUDER M,et al.Microscopic traffic datacollection by remote sensing [J ].TransportationResearch Record,2003,1855:121-128.
  • 4KNOOP V L,HOOGENDOORN S P,VAN ZUYLEN HJ.Processing traffic data collected by remote sensing[J].Transportation Research Record,2009,2129:55-61.
  • 5DUCARD G J J.Practical methods for small unmannedaerial vehicles [M].Berlin:Springer?Verlag,2010.
  • 6BRADSKI G,KAEHLER A.Learning OpenCV [M].Sebastopol:O’Reilly Media,2008.
  • 7ZHANG Z Y.A flexible new technique for cameracalibration [J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2000,22(11):1330-1334.
  • 8Satyam S,Edward J D. Video-based real-time surveillance of vehicles [J]. J. Electron imaging, 2013, 22 (4) : 451 -459.
  • 9SAYKOL E. Key frame labeling technique for surveillance even! elassifieatinn [J]. Optical engineering, 2010, 49(11) :492-496.
  • 10AVILA S E. VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method [J].Pattern recognition letters ,2010,32 ( 1 ) :56-68.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部