期刊文献+

一种改进型Canny联合阈值分割的图像背景去除——在外观专利图像检索中的应用 被引量:1

Improved background removal based on Canny algorithm and threshold segmentation
下载PDF
导出
摘要 背景去除是外观专利图像检索中图像预处理的重要归一化步骤,针对外观设计专利图像库中图像背景多样性、复杂性和随机性的特点,提出了一种改进型Canny算子联合阈值分割的图像分割算法。通过对图像颜色采样的自适应阈值分割获取阈值,联合Canny算子和形态学方法对图像生成前景物体分割模板,从而有效去除背景信息。实验证明,与改进前的图像分割算法对比,该算法得到的前景物体轮廓更加精确;针对外观专利图像检索平台中的图像分割,该算法具有很好的自适应性。 In the design pattern image retrieval system, background removal is the important step of image normalization when the image is reprocessed. An improved algorithm of Canny operator combined with threshold segmentation is introduced, considering the properties of image in the design pattern image database, that is variety, complexity and randomicity. Through an adaptive threshold segmentation based on sampling with color to acquire the threshold, it combines with Canny operator and morphological method to get the foreground object segmentation template. The experiment shows that the algorithm introduced in this paper generates more accurate contour of foreground objects in contrast with the algorithm not being improved. For image segmentation of design pattern image retrieval specially, this algorithm shows good adaptability.
出处 《计算机工程与应用》 CSCD 2012年第1期208-211,共4页 Computer Engineering and Applications
基金 广东省产学研项目(No.2008B090500254) 广东省信产厅项目(No.GDIID2008IS007 GDIID2008IS003)
关键词 背景去除 阈值分割 边缘提取 CANNY算子 background removal threshold segmentation edge extraction Canny operator
  • 相关文献

参考文献3

二级参考文献31

  • 1王惠斌,袁大勇.第二代身份证相片的拍摄、检测和采集[J].警察技术,2004(6):28-29. 被引量:3
  • 2李琨,郑庆晖,廖冬学.基于梯度特征的图像自动分割方法[J].宇航学报,2006,27(6):1288-1292. 被引量:9
  • 3李明,李云松.改进的快速模糊C均值聚类的图像分割方法[J].兰州理工大学学报,2007,33(3):95-99. 被引量:12
  • 4丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 5Lievin M,Luthon F.Lip features automatic extraction[C]// Proceedings of the IEEE International Conference on Image Processing,Chicago,1998,3:168 -172.
  • 6ZHANG X,Mersereau R M.Lip feature extraction towards an automatic speechreading system[C]// Proceedings of the IEEE International Conference on Image Processing,Vancouver,Canada,2000,3:226-229.
  • 7Bezdek J C.Pattern Recognition with Fuzzy Objective Function Algorithms[M].New York:Plenum Press,1981.
  • 8Efendi N N,Gozde U.A new unsupervised approach for fuzzy clustering[J].Fuzzy Sets and Systems,2007,158:2118 -2133.
  • 9Thitimajshima P.A new modified fuzzy c-means algorithm for multispectral satellite images segmentation[C]// Proceedings of Geoscience and Remote Sensing Symposium.Honolulu,HI,2000,4:1684-1686.
  • 10Wang X Z,Wang Y D,Wang L J.Improving fuzzy c-means clustering based on feature-weight learning[J].Pattern Recognition Letter,2004,25(10):1123 -1132.

共引文献5

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部