期刊文献+

从神经切片图像中识别功能束类型的研究 被引量:3

Type recognition of fascicular groups from nerve slice image
原文传递
导出
摘要 提出一种采用多方向梯度及其二阶梯度描述神经切片图像的纹理特征,进而识别神经功能束类型的方法。首先,在神经切片图像随机选择一些像素,获得这些像素在邻域范围内4个方向上的梯度和二阶梯度的变化曲线;其次,提取这些曲线的周期和幅值作为描述这些随机选择像素邻域的特征;再次,采用粗糙K均值算法对这些随机选择像素进行聚类处理,从而把功能束区分为不同的类型;最后,分析了在此过程中两个参数对功能束类型区分结果的影响。实验结果表明,所提出的纹理特征描述方法可以准确区分神经切片图像中不同类型的功能束,所提出的识别算法不仅能有效识别神经功能束的类型,而且识别结果与所需设置的参数无关,因此,具有比较强的适应性。 An approach to recognize types of fascicular groups from nerve slice image by the gray level multi-direction gradient and its 2nd derivative gradient is proposed in this paper. First, some pixels are selected arbitrarily from a slice image and the gray level multi-direction gradient and the 2nd derivative gradient of their neighborhood areas are calculated. Then the frequency and amplitude of the multi-direction gradient and 2nd derivative gradient curves are extracted as the texture features of the arbitrarily selected pixels neighborhood. Second, the algorithm for recognizing the typos of fascicular groups in nerve slice image is proposed based on the improved rough K-means clustering. The parameters influencing the recognition results are analyzed. The experimental results show that the approach can not only classify the types of fascicular groups accurately but the recognizing results are unrelated with the parameters, which reflect its good adaptivity.
作者 钟映春 罗鹏
出处 《中国图象图形学报》 CSCD 北大核心 2012年第1期82-89,共8页 Journal of Image and Graphics
基金 广东省科技计划项目(2010A030500006)
关键词 切片图像 纹理 多方向梯度 神经功能束 slice image texture multi-direction gradient nerve fascicular groups
  • 相关文献

参考文献12

  • 1Kagemann L, Isikawa H, Wollstein G. Visualization of 3D high speed ultrahigh resolution optical coherence tomographic data identifies structures visible in 2D frames [ J ]. Optics Express, 2009,17 (5) :4208-4220.
  • 2王虎,路来金,刘东昕.周围神经束的快速鉴别[J].实用手外科杂志,2006,20(1):35-36. 被引量:1
  • 3陈增淦,张猛,张键,陈统一,夏庆,谢水生,胡平,李华.人体坐骨神经连续组织切片三维重建研究[J].复旦学报(医学版),2008,35(4):510-513. 被引量:9
  • 4谢小棉,陈思平,李树祥,李绍光,葛遗林.尺神经功能束组三维可视化研究[J].中国生物医学工程学报,2004,23(3):199-204. 被引量:8
  • 5张斌,宋旸,贺安之.基于任意方向图像导数算法的边缘检测技术[J].光电工程,2009,36(10):124-128. 被引量:5
  • 6Takehiko T, Masaya N, Masayuki Y, et al. Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography [ J ]. Neurolmage, 2009, 44 : 884-892.
  • 7Domenec P, Mignel A G, Jaime M. Application-independent feature selection for texture classification [ J ]. Pattern Recognition,2010,43 (10) : 3282-3297.
  • 8Manjunath S B, Ma Y W. Texture features for browsing and retrieval of image data[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18 (8) :837-842.
  • 9Speis A, Healey G. Feature extraction for texture discrimination via random field models with random spatial iteraction [ J ]. IEEE Transactions on Image Processing, 1996,5 (4) :635-645.
  • 10Huang P W, Dai S K, Lin P L. Texture image retrieval and image segmentation using composite sub-band gradient vectors [ J ]. Journal of Visual Communication &Image Representation, 2006, 17(5) :947-957.

二级参考文献44

  • 1陈增淦,陈统一,张键,陈中伟,李华,贾富仓,刘丽艳.臂丛神经显微结构的计算机三维重建[J].中华骨科杂志,2004,24(8):462-466. 被引量:21
  • 2玉振明,毛士艺,袁运能,高飞.基于边缘检测小波变换的图像融合研究[J].电子学报,2005,33(8):1446-1450. 被引量:9
  • 3张绍祥,刘正津,何光篪,徐美和,唐泽圣.生物塑化薄层连续断面的计算机三维重建[J].解剖学报,1996,27(2):113-118. 被引量:57
  • 4严志强,王友华,张沛云,顾晓松.快速免疫组化法区分人周围神经束性质[J].中华显微外科杂志,1996,19(1):3-5. 被引量:19
  • 5钟世镇 刘牧之 等.正中神经的显微外科解剖学研究[J].解剖学报,1980,11:337-339.
  • 6Castleman Kenneth R. Digital Image Processing [M]. Beijing: Tsinghua University Press, 1998: 462-466.
  • 7Mallat S, Zhong S. Characterization of signals from multiscale edges [J]. IEEE Trans. on PAMI(S0162-8828), 1992, 14(7): 710-732.
  • 8Truchetet F, Laligant O, Bourenanne E, et al. Frame of wavelets for edge detection [J]. Proc. of SPIE(S0277-786X), 1994, 2303: 141-152.
  • 9REN Chao, WU Si-liang, JIAO Li-cheng. Edge detection algorithm of SAR images with wedgelet filter [J]. Journal of Beijing Institute of Technology(S1004-0579), 2008, 17(3): 346-350.
  • 10Canny J. A computational approach to edge detection [J]. IEEE Trans. on PAMI(S0162-8828), 1986, 8(6): 679-698.

共引文献16

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部