期刊文献+

一种求解单一簇的模糊双聚类算法 被引量:1

Fuzzy biclustering algorithm for single cluster
下载PDF
导出
摘要 双聚类算法是一类新型数据挖掘聚类算法,通常以均方残差为评价指标.基于均方残差的双聚类算法,大多采用贪婪策略求解,通常不能得到大小适中且结果准确的簇.而在联合聚类中,模糊理论能改善这种基于均方残差的算法,得到大小适中且结果准确的簇.为了提高基于均方残差双聚类算法的性能,本文结合模糊理论提出一种求解单一簇的模糊双聚类算法.首先,提出定义双聚类簇内的模糊变量,即显著性指标;然后,建立基于显著性指标的模糊双聚类模型,并给出算法及其收敛性分析;最后,利用仿真数据和真实数据,将模糊双聚类算法与FLOC双聚类算法和模糊联合聚类算法进行对比,以验证模糊双聚类算法的有效性. The biclustering algorithms are a kind of new data mining methods, which are commonly evalu- ated with mean squared residue. Biclustering algorithms based on mean squared residue mostly use a greedy strategy, which can not obtain accurate clusters with appropriate size. However, fuzzy theory can improve the performance of coclustering algorithms based on mean squared residue clustering and obtain more accurate clusters with appropriate size. This paper presents a fuzzy biclustering algorithm for solving a single cluster based on fuzzy theory to improve the performance of biclustering algorithms based on mean squared residue clustering. Firstly, the paper defines the fuzzy variables named significant indicators for biclustering problem. Then, this paper builds a novel fuzzy biclustering model, and gives an algorithm and its convergence analysis. Finally, compared with the biclustering algorithm FLOC and the fuzzy coclustering simulation data and real data, the fuzzy biclustering algorithm is more effective.
作者 郭崇慧 庞军
出处 《系统工程学报》 CSCD 北大核心 2011年第6期857-866,共10页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(70871015 71031002)
关键词 双聚类 均方残差 模糊聚类 biclustering mean squared residue fuzzy clustering
  • 相关文献

参考文献17

  • 1Busygin S, Prokopyev O A, Pardalos P M. Biclustering in data mining[J]. Computers & Operations Research, 2008, 35(9): 2964 - 2987.
  • 2Madeira S C, Oliveira A L. Biclustering algorithms for biological data analysis: A survey[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2004, 1(1): 24 - 45.
  • 3Cheng Y Z, Church G M. Biclustering of expression data[C]//Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology. Menlo Park, California, USA: AAAI Press, 2000:93 - 103.
  • 4Yang J, Wang W, Wang H X, et al. 8 -Clusters: Capturing subspace correlation in a large data set[C]//Proceedings of the 18th IEEE International Conference on Data Engineering. San Jose, California, USA: IEEE Computer Society Press, 2002:517 - 528.
  • 5Yang J, Wang W, Wang H-X, et al. Enhanced biclustering on expression data[C] //Proceedings of the 3rd IEEE Conference on Bioinformatics and Bioengineering. Bethesda, Maryland, USA: IEEE Computer Society Press, 2003:321 - 327.
  • 6Prelic A, Bleuler S, Zimmermann P, et al. A systematic comparison and evaluation of biclustering methods for gene expression data[J]. Bioinformatics, 2006, 22(6): 1122- 1129.
  • 7Cho H, Dhillon I S, Guan Y Q, et al. Minimum sum-squared residue co-clustering of gene expression data[C]//Proceedings of the 4th SIAM International Conference on Data Mining. Lake Buena Vista, Florida, USA: SIAM Press, 2004, 114 - 125.
  • 8Tjhi W C, Chen L H. Minimum sum-squared residue for fuzzy co-clustering[J]. Intelligent Data Analysis, 2006, 10(3): 237 - 249.
  • 9Pedrycz W. Knowledge-based Clustering: From Data to Information Granules[M]. Hoboken, New Jersey: John Wiley, 2005, 66 - 86.
  • 10Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981:43 - 86.

二级参考文献7

共引文献11

同被引文献14

  • 1Hartigan J A, Wong M A. Algorithm AS 136:a K-means clustering algorithm[J] . Applied Statistics, 1979, 21(2):100-108.
  • 2Basu S, Bilenko M, Mooney R J. A probabilistic framework for semi-supervised clustering[C] //Proc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2004:59-68.
  • 3Forsati R, Doustdar H M, Shamsfard M, et al. A fuzzy co-clustering approach for hybrid recommender systems[J] . International Journal of Hybrid Intelligent Systems, 2013, 10(2):71-81.
  • 4Liu Yiyi, Gu Quanquan, Hou J P, et al. A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression[J] . BMC Bioinformatics, 2014, 15(1):37-45.
  • 5Getz G, Levine E, Domany E. Coupled two-way clustering analysis of gene microarray data[J] . Proceedings of the National Academy of Sciences, 2000, 97(22):12079-12084.
  • 6Qu Jibin, Ng M, Chen Luonan. Constrained subspace clustering for time series gene expression data[C] //Proc of the 4th International Conference on Computational Systems Biology. 2010:323-330.
  • 7Bhattacharya A, De Rajat K. Bi-correlation clustering algorithm for determining a set of co-regulated genes[J] . Bioinformatics, 2009, 25(21):2795-2801.
  • 8Angiulli F, Cesario E, Pizzuti C. A greedy search approach to co-clustering sparse binary matrices[C] //Proc of the 18th IEEE International Conference on Tools with Artificial Intelligence. [S. l.] :IEEE Press, 2006:363-370.
  • 9Cho H, Dhillon I S, Guan Yuqiang, et al. Minimum sum-squared residue co-clustering of gene expression data[C] //Proc of the 4th SIAM International Conference on Data Mining. 2004:114-125.
  • 10Yang Jiong, Wang Wei. Enhanced biclustering on gene expression data[C] //Proc of the 3rd IEEE Conference on Bioinformatics and Bioengineering. 2003:321-327.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部