期刊文献+

不确定性条件下的企业供应链操作计划优化研究

Study on operational planning for entrepreneur supply chain under uncertainty
原文传递
导出
摘要 企业供应链操作计划优化需要统筹规划供应链上各个环节的生产、库存与运输,并且需要考虑工厂内生产资源的限制,确保生产计划能够在资源限制范围内完成。本文首先建立了企业供应链物流优化的线性规划(LP)数学模型及工厂内生产操作的混合整数线性规划(MILP)数学模型,通过分解和循环优化的方法研究了企业供应链的操作优化问题。在企业供应链操作计划优化问题中会遇到需求、交货时间及加工时间等的不确定性,本文通过鲁棒性方法处理这些不确定性参数,使得生产、库存与运输策略能够适应需求、交货时间等的变化。本文通过一个工业案例的计算验证了所提出的新方法。工业案例的计算结果表明通过本文的方法可以得到企业供应链操作计划的最优策略,达到降低供应链的总成本的目的。计算结果表明得到的企业供应链操作计划最优生产策略在工厂生产资源限制范围内。 Operational planning is very important for entrepreneur supply chain. Supply chain manager should arrange the production, inventory and delivery of the whole supply chain to minimize the cost and to maximize the consumer value. What's more, production limit of resources in factories should be considered so that the production goal can be achieved in factories. A linear program model for entrepreneur supply chain logistics optimization and a mixed-integer linear program model for production planning in factories were developed and integrated for operational planning in order to obtain the optimal strategies for delivery, inventory and production. Decomposed and loop optimization method was applied in the operational planning. Parameters about customer demand, lead time and processing time were uncertain. The robust optimization approach was applied to handle the uncertainties from the demand, lead time, and processing time. Finally, a case study from industry is used to validate the model and the algorithm. Optimal results about operational planning for entrepreneur supply chain were approached.
作者 张帆 朱玉山
出处 《计算机与应用化学》 CAS CSCD 北大核心 2011年第12期1534-1540,共7页 Computers and Applied Chemistry
关键词 企业供应链 操作计划 鲁棒优化 不确定性 entrepreneur supply chain, operational planning, robust optimization, uncertainty
  • 相关文献

参考文献7

  • 1You F, Grossmarm I E. Design of responsive supply chains under demand uncertainty. Computers &Chemical Engineering, 2008, 32: 3090-3111.
  • 2You F, Grossmann I E. Integrated multi-echelon supply chain design with inventories under uncertainty: MINLP models. Computational Strategies. AIChE J, 2010, 56:419-440.
  • 3Floudas C A, Lin X. Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review. Computers &Chemical Engineering, 2004, 28:2109-2129.
  • 4Lin X, Jarlak S L, Floudas C A. A new robust optimization approach for scheduling under uncertainty: I. Bounded uncertainty. Computers &Chemical Engineering, 2004, 28:1069-1085.
  • 5Janak S L, Lin X, Floudas C A. A new robust optimization approach for scheduling under uncertainty II. Uncertainty with known probability distribution. Computers &Chemical Engineering, 2007, 31:171-195.
  • 6Verderame P M, Floudas C A. Multisite planning under demand and transportationtime uncertainty: robust optimization and conditional value-at-risk frameworks. Industrial & Engineering Chemistry Research, 2010.
  • 7IBM, IBM ILOG CPLEX. 10.0, 2010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部