期刊文献+

乳腺肿瘤超声图像特征参数量化研究进展 被引量:12

Overview of Quantitative Analysis of Feature Parameters in Breast Tumor Ultrasound Images
下载PDF
导出
摘要 乳腺肿瘤超声图像的特征量化分析对判别肿瘤的良、恶性具有重要价值。本文总结了良性和恶性乳腺肿瘤在超声图像上的特点,将乳腺良性肿瘤和恶性肿瘤鉴别特征在形状、边缘、边界、朝向、回声特点几个方面的量化方法和量化参数进行了较为全面的梳理,并对量化特征与肿瘤良、恶性之间的关系进行了分析。 It is of great value for the quantitative analysis of feature parameters in breast tumor ultrasound images to distinguish the carcinoid and the malignancy. We summarized the features of the benign and malignant breast ultrasound images, analyzed the quantitative methods and quantitative parameters of shape features, boundary features, edge features, orientation and echo characteristics to identify benign or malignant breast tumors. Finally, we discussed the relationship between the quantitative characteristics and the benign or malignant breast tumors.
出处 《北京生物医学工程》 2011年第6期656-660,共5页 Beijing Biomedical Engineering
基金 中国医学科学院医学信息研究所基本科研业务费课题(10R0113)资助
关键词 乳腺肿瘤 超声图像 量化分析 breast tumor ultrasound image quantitative analysis
  • 相关文献

参考文献17

  • 1Stavros AT.Sonographic evaluation of solid breast nodules[C].Breast Cancer Res Symposium Mammographicum,2004,6(Suppl 1):3.
  • 2Joo SY,Yang YS,Moon WK,et al.Computer-aided diagnosis of solid breast nodules use of an artificial neural network based on multiple sonographic features[J].Medical Imaging,2004,23(10):1292-1300.
  • 3彭玉兰.乳腺高频超声图谱[M].北京:人民卫生出版社,2006:81-82.
  • 4Starvos AT,Thickman D,Rapp CL,et al.Solid breast nodules:use of sonography to distinguish between benign and malignant lesions[J].Radiology,1995,196(1):123-134.
  • 5Chou YH,Tiu CM,Hung GS,et al.Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis[J].Ultrasound in Med & Bio,2001,27(11):1303-1306.
  • 6Radhika S.Texture analysis of lesions in breast ultrasound images[J],Comput Medi Imag and Grap,2002,26(5):303-307.
  • 7Wenjia K,Rueyfeng C,Moon WK.Computer-aided diagnosis of breast tumors with different US systems[J].Academic Radiology,2002,9(7):793-799.
  • 8Darren C,Rueyfeng C,Wenjia K.Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks[J].Ultrasound in Medicine & Biology,2002,28(10):1301-1310.
  • 9Chen SJ,Cheng KS,Dai YC,et al.Quantitatively characterizing the textural features of sonographic images for breast cancer with histopathologic correlation[J].Ultrasound Med,2005,24(5):651-661.
  • 10张晋熙,姜玉新.浅表器官组织超声诊断学[M].北京:科学技术文献出版社,2000:124.

二级参考文献35

  • 1张缙熙.乳腺超声的现状及展望[J].中国超声医学杂志,1995,11(4):261-263. 被引量:22
  • 2Starvos AT,Thickman D,Rapp C.Solid breast and malignant lesions.Radiology.1995;196(2):123-134.
  • 3Radhika S.Texture Analysis of lesion in breast ultrasound images.Comput Med Imaging Graph.2002;26(2):303-307.
  • 4Kuo WJ,Chang RF,Moon WK,et al.Computer-aided diagnosis of breast tumors with different US systems.Acad Radiol.2002;9(7):793-799.
  • 5Chen DR,Chang RF,Kuo WJ,et al.Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks.Ultrasound Med Biol.2002;28(10):1301-1310.
  • 6Zheng Y,Greenleaf JF,Gisvold JJ.Reduction of Breast Biopsies with a modified self organizing map.IEEE Trans Neural Netw.1997;8(6):1386-1396.
  • 7Chou YH,Tiu CM,Hung GS,et al.Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis.Ultrasound Med Biol.2001;27(11):1493-1497.
  • 8Haralick RM,Shapiro LG.Computer and Robot Vision.Addison-Wesley Publishing Company.1992.
  • 9Whechsler W.Texture analysis:a survey.Signal Processing.1980;2:271-280.
  • 10Papoulis,A.Probability,Random Variables,and Stochastic Processes,3rd ed.1991.McGraw-Hill,New York.

共引文献35

同被引文献131

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部