期刊文献+

螺杆转子磨床砂轮架的动态特性分析与优化 被引量:4

Dynamic Characteristics Analysis and Optimization of Screw Rotor Grinder's Grinding Carriage
下载PDF
导出
摘要 以高精度数控螺杆转子磨床砂轮架为研究对象,利用ANSYS Workbench有限元分析软件对其进行了模态分析和谐响应分析,获得砂轮架的前六阶固有频率和振型,识别出砂轮架的薄弱环节,并验证了砂轮架能够成功克服共振。在此基础上,以提高砂轮架低阶固有频率和降低总质量为优化目标,提出了三类改型方案,采用方案对比优选的方法确定综合方案,并通过静力分析验证了综合方案的可行性。结果表明:与原结构相比,优化后砂轮架的一阶固有频率提高了8.63%,同时总质量减轻了8.84%,达到了较好的优化效果,为砂轮架结构的改进优化提供了理论参考依据。 Taking the high precision NC screw rotor grinder's grinding carriage as the researching object,the modal analysis and harmonic responses analysis are made by ANSYS Workbench finite element analysis softw are.The first six orders of natural frequency and mode shapes are obtained,the w eak points of grinding carriage are identified,and it is verified that the grinding carriage could successfully overcome resonance.Then,three retrofit schemes are presented w ith increasing grinding carriage's low order natural frequency and decreasing total quality as optimized object.The optimal scheme is confirmed by the method of comparison optimized schemes,and the feasibility of the optimal scheme is verified through the structure static analysis.The results show that,compared w ith the original structure of the grinding carriage,the first-order natural frequency increases 8.63%,w hile the total quality decreases 8.84%.This study achieves good effect,and provides the theoretical reference for the optimization of grinding carriage structure.
出处 《组合机床与自动化加工技术》 北大核心 2011年第12期4-9,共6页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金(51105208) 国家科技重大专项(2011ZX04003-021-02 2009ZX04001-171-02) 江苏省创新学者攀登项目(BK2008050) 中国博士后基金号(20110491426) 江苏省博士后科学基金(1101082C)
关键词 螺杆转子磨床 砂轮架 模态分析 谐响应分析 结构优化 screw rotor grinder grinding carriage mode analysis harmonic responses analysis structure optimization
  • 相关文献

参考文献5

二级参考文献15

共引文献51

同被引文献31

  • 1朱鹏飞,任小中.成形法磨齿加工中切向磨削力的试验研究[J].金刚石与磨料磨具工程,2013,33(4):74-77. 被引量:4
  • 2倪晓宇,易红,汤文成,倪中华.机床床身结构的有限元分析与优化[J].制造技术与机床,2005(2):47-50. 被引量:89
  • 3胡秋,腾强.数控机床高速主轴单元动态特性仿真分析[J].机床与液压,2007,35(1):204-206. 被引量:15
  • 4de Vivo A, Brutti C, Leofanti J L. Modal Shape Identification of Large Structure Exposed to Wind Excitation by Operational Modal Analysis Tech- nique[J]. Mechanical Systems and Signal Process- ing,2013,39(1/2) : 195-206. 28(1) :64-67.
  • 5Zhang Yimin, Zhang Shouyuan, Li He, et al. Modes in Operational Modal Analysis[J3. Journal of Vibra- tion and Shock,2009,28(1):64-67.
  • 6Zhang Guowen, Tang Baoping, Tang Guangwu. An Improved Stochastic Subspace Identification for Operational Modal Analysis [J ]. Measurement, 2012,45 (5) : 1246-1256.
  • 7Zhang Lingmi, Wang Tong, Tamura Yukio. A Fre- quency - spatial Domain Decomposition (FSDD) Method for Operational Modal Analysis [J]. Me chanica[ Systems and Signal Processing, 2010, 24 (5) : 1227-1239.
  • 8Huang N E,Shen Z,Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Non- linear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society of London, 1998, 454 ( 1 ) : 903-995.
  • 9Yuen K V, Katafygiotis L S. Bayesian Fast Fou- rier Transform Approach for Modal Updating Using Ambient Data[J]. Advances in Structural Engineering, 2003,6 (2) : 81-95.
  • 10Au S K. Fast Bayesian FFT Method for Ambient Modal Identification with Separated Modes [J]. Journal of Engineering Mechanics, 2011,137 ( 3 ) : 214-226.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部