期刊文献+

KZnF3:Ce,Tb的溶剂热合成及光谱性质 被引量:7

Solvothermal Synthesis and Fluorescence of KZnF_3∶Ce,Tb
下载PDF
导出
摘要 采用溶剂热法合成了Ce3+,Tb3+单掺和双掺KZnF3发光粉。分析了样品的结构与形貌。结果表明,所合成的样品均为单相,颗粒粒度分布均匀。讨论了它们的光谱特性。研究发现,在KZnF3∶Ce3+激发光谱中激发带劈裂成2个带峰,最大发光中心分别位于263 nm(主峰)和246 nm,而在发射光谱中只观察到1个带状发射峰,最大发射中心位于330 nm。在KZnF3∶Tb3+激发光谱中存在较强的基质激发峰,而在发射光谱中,发现Tb3+的5D4→7FJ(J=6,5,4,3)跃迁。在KZnF3双掺体系中,Tb3+的发光强度随Ce3+的浓度增加而增强,存在Ce3+→Tb3+能量传递,尤其是Tb3+的5D4→7F5跃迁发射显著增强,有望成为一种有发展前途的绿色荧光材料。 Abstract: Phosphors of KZnF3 :Ce^3+, KZnF3 :Tb^3+ and KZnF3 :Ce^3+,Tb^3+ were synthesized respectively through solvothermal method at 220 ℃. X-ray diffraction (XRD) pattern was used to identify the formation of KZnF3 phase without detectable impurity. Environment scanning electron microscopy (ESEM) image showed the grain size distribution was uniform with cubic morphology. Spectral characteristics of the rare earth ions doped KZnF3 had been investigated. In Ce-doped KZnF3 system, there were two emission peaks in the excitation spectrum, locatedat 246 and 263 nm, respectively, while the emission spectrum of Ce-doped KZnF3 appeared as a broad range with the maximum center located at 330 nm. In Tb-doped KZnF3 system, there was strong matrix exciting peak in the excitation spectrum, while the transition from 5D4→^7TFJ (J=6, 5, 4, 3) of Tb^3+ was found in the emission spectrum. The luminescence intensity of Tb^3+ strengthened with the increase of the Ce^3+ ion concentration in co-doped system of KZnF3. It was found that there was an effective energy transfer from Ce^3+ to Tb^3+ and especially the emission peaks ascribed to Tb^3+ ions transition from 5D4→^7F5 strengthened greatly in KZnF3. It was expected that the phosphor of KZnF3:Ce^3+, rib^3+ would become a promising green-emitting fluorescent material.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2012年第1期8-12,共5页 Chinese Journal of Inorganic Chemistry
基金 国家-广东联合基金(No.U0734005) 中央高校基本科研业务费专项资金(No.21610102) 国家自然科学青年基金(No.20906037)资助项目
关键词 溶剂热 稀土离子 KZNF3 光谱 能量传递 solvothermal synthesis rare earth ion KZnF3 photoluminescence energy transfer
  • 相关文献

参考文献20

  • 1Mikhail F L.Appl.Magn.Reson.,1998,14(3):427-434.
  • 2Freire P T C,Lemos V,Pilla O,et al.J.Chem.Phys.,1999,110(8):3995-3441.
  • 3Hagenmuller P.Inorganic Solid Fluoride Chemistry andPhysics.New York:Academy Press Inc,1985:477-487.
  • 4张献明,苏海全,臧春雨,王富山,石春山.KZnF_3中Ce^(3+)→Eu^(2+)的能量传递[J].高等学校化学学报,1999,20(9):1334-1337. 被引量:15
  • 5LIHong(李竑) JIAZhi-Hong(贾志宏) FENGShou-Hua(冯守华) etal.Gaodeng XuexiaoHuaxue Xuebao,2000,:1805-1808.
  • 6Editorial Committee of the China Materials EngineeringCanon(中国材料工程大典编委会).China MaterialsEngineering Canon:Vol.13(中国材料工程大典:第13卷).Beijing:Chemical Industry Press,2006:482-548.
  • 7Kam C H,Buddhudu S.Mater.Lett.,2002,543(5):337-342.
  • 8Ntwaeaborwa O M,Swart H C,Kroon R E,et al.J.Phy.Chem.Solids,2006,67(8):1749-1753.
  • 9朱国贤,连洪州,莫凤珊,石春山.BaLiF_3∶Ce^(3+)纳米粒子的制备及其光谱特性[J].高等学校化学学报,2006,27(2):215-217. 被引量:7
  • 10Tan Y W,Shi C S.J.Phys.Chem.Solids,1999,60:1805-1810.

二级参考文献18

  • 1刘应亮 石春山 等.-[J].中国稀土学报,1990,8(1):13-13.
  • 2Kulis P. , Tale I. , Gromuls I. et al.. Radiation Measurements[J]. 2004, 38:723-726.
  • 3Hagenmuller P.. Inorganic Solid Fluoride Chemistry and Physics[M]. New York: Academy Press. Inc. 1985 : 477-487.
  • 4Okada F. , Togawa S. , Ohta K. et al.. J. Appl. Phys. [J]. 1994, 75:49-50.
  • 5Sarakura N.. Opt. Lett. [J]. 1995, 20(3) : 294-296.
  • 6Weber M. J.. J. Appl. Phys. [J]. 1973, 44(3): 3025-3026.
  • 7Su Hai-Huan, Jia Zhi-Hong, Shi Chun-Shan. Chem. Mater. [J]. 2002, 14:310-312.
  • 8Hasegawa Y.. Rare Earths[J] , 2004, 45:1-10.
  • 9Tan Yiwei, Shi Chunshan. J. Solid State Chemistry[J]. 2000, lSO: 178-182.
  • 10ZHANGLi-De(张立德) MUJi-Mei(牟季美).Nanomaterials and Nanostructure(纳米材料和纳米结构)[M].Beijing:Science Press,2001.79-84.

共引文献17

同被引文献58

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部