期刊文献+

图案化锥形氧化锌纳米带的原位热氧化法制备与发光性质 被引量:2

In-situ Growth and Photoluminescence of the Patterned Conelike ZnO Nanobelts through Thermal Oxidation
下载PDF
导出
摘要 采用光刻技术制备出图案的锌膜,所得锌膜与纯氧在700℃氧化反应10 min,在锌膜的表面上原位生长出具有图案的锥形ZnO纳米带阵列,实现了ZnO纳米带生长位置的可控生长。锌膜上得到的锥形ZnO纳米带为单晶六方纤锌矿结构,长度在1~4μm,纳米带根部和顶部的宽度分别在300~700 nm和100~300 nm。提出了锥形ZnO纳米带的可能生长机理。在波长为300nm光的激发下,发现了锌膜上锥形ZnO纳米带具有发光峰位于395 nm弱的紫外光发光和510 nm强的蓝绿光发光,它们分别起源于ZnO宽带隙的激子发射以及表面上离子化氧空位中的电子与价带中光激发的空穴之间的复合。 The patterned zinc film was fabricated by the photolithography. The patterned conelike ZnO nanobelts arrays have been in-situ growing on the surface of the patterned zinc film at 700 ℃ in 02 atmosphere for 10 min. The control over the growth position of the nanobelts was achieved. The conelike ZnO nanobelts growing on the zinc film were single crystalline with the wurtzite structure, and have lengths of 1-4 μm. The width of theconelike nanobehs on the bottom and the tip are 300-700 nm and 100-300 nm, respectively. A possible mechanism was also proposed to account for the formation of the conelike ZnO nanobelts. A weak UV emission at 395 nm and an intense green-blue emission peak at 510 nm were observed from the conelike ZnO nanobelts growing on the zinc film. The 395 and 510 nm emissions are assigned to the free excition emission from the band gap of ZnO, and recombination of electrons in ionized oxygen vacancies on the surface with photoexcited holes in the valence band, respectively.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2012年第1期25-29,共5页 Chinese Journal of Inorganic Chemistry
基金 新疆维吾尔自治区高校科研重点项目(No.XJEDU2009I01) 新疆大学博士启动基金(No.BS090121)资助项目
关键词 ZNO 锥形纳米带:图案:光致发光 ZnO conelike nanobehs pattern photoluminescence
  • 相关文献

参考文献26

  • 1Gao S Y,Zhang H J,Wang X M,et al.J.Phys.Chem.B,2006,110(32):15847-15852.
  • 2HUHan-Mei(胡寒梅) DENGChong-Hai(邓崇海) ZHANGKe-Hua(张克华) etal.Wuji HuaxueXuebao,2008,:495-498.
  • 3Pan Z W,Dai Z R,Wang Z L.Science,2001,291(5510):1947-1949.
  • 4Huang M H,Mao S,Feick H,et al.Science,2001,292(5523):1897-1899.
  • 5Wang Z L.J.Phys.:Condens Mater.,2004,16(25):R829-R858.
  • 6Fan Z Y,Wang D W,Chang P C,et al.Appl.Phys.Lett.,2004,85(24):5923-5925.
  • 7Wan Q,Li Q H,Chen Y J,et al.Appl.Phys.Lett.,2004,84(18):3654-3656.
  • 8Kang B S,Ren F,Heo Y W,et al.Appl.Phys.Lett.,2005,86(11):112105-112108.
  • 9Fan Z Y,Lu J G.Appl.Phys.Lett.,2005,86(3):032111-032113.
  • 10Park W I,Kim J S,Yi G C,et al.Adv.Mater.,2005,17(11):1393-1397.

二级参考文献27

  • 1Lieber, C. M.; Wang, Z. L. MRS Bull. 2007, 32, 99.
  • 2Gao, S. Y.; Zhang, H. J.; Wang, X. M.; Deng, R. P.; Sun, D. H.; Zheng, G. L. J. Phys. Chem. B 2006, 110, 15847.
  • 3Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.
  • 4Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science 2001, 292, 1897.
  • 5Wang, Z. L. Appl. Phys. A 2007, 88, 7.
  • 6Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li,J. P.; Lin, C. L. Appl. Phys. Lett. 2004, 84, 3654.
  • 7He, J. H.; Ho, S. T.; Wu, T. B.; Chen, L. J.; Wang, Z. L. Chem. Phys. Lett. 2007, 435, 119.
  • 8Fan, Z. Y.; Lu, J. G.Appl. Phys. Lett. 2005, 86, 032111.
  • 9Park, W. I.; Kim, J. S.; Yi, G. C.; Lee, H. J. Adv. Mater. 2005, 17, 1393.
  • 10Gao, P. X.; Song, J. H.; Liu, J.; Wang, Z. L. Adv. Mater. 2007, 19, 67.

共引文献12

同被引文献18

  • 1徐国成,潘玲,关庆丰,邹广田.非晶钛酸铋的晶化过程[J].物理学报,2006,55(6):3080-3085. 被引量:9
  • 2KA杰克逊.半导体工艺[M].北京:科学出版社,1999.
  • 3He J H, Hsu J H, Wang C W, et al. Pattern and Feature Designed Growth of ZnO Nanowire Arrays for Vertical Devices [J]. J. Phys. Chem. B. , 2006, 110(1):50-53.
  • 4Greyson E C, Babayan Y, Odom T W. Directed Growth of Ordered Arrays of Small-Diameter ZnO Nanowires [J]. Adv. Mater., 2004,16 (15) :1348-1352.
  • 5Wang X D, Summers C J, Wang Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoeleetronies and nanosensor arrays [J]. Nano. Lett., 2004, 4(3):423-426.
  • 6Yang P D, Yah H Q, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties [J]. Adv. Funct. Mater. , 2002,12(5) :323-331.
  • 7Kang H W, Yeo J, Hwang J O, et al. Simple ZnO Nanowires Patterned Growth by Microeontaet Printing for High Performance Field Emission Device [J]. J. Phys. Chem. C. , 2011 (115): 11435-11441.
  • 8Lee J M, Pyun Y B, Yi J, et al. ZnO nanorod-graphene hybrid architectures for multifunctional conductors [J]. J. Phys. Chem. C., 2009,113 (44):19134-19138.
  • 9Ogata K, Dobashi H, Koike K, et al. Patterned growth of ZnO nanorods and enzyme immobilization toward the fabrication of glucose sensors [J]. Physica E. , 2010,42(10):2880-2883.
  • 10Zhang N, Yu K, Zhang Y S, et al. Patterned growth of ZnO nanorods and their field emission properties[J]. Curr. Appl. Phys. 2009(9) :34-38.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部