期刊文献+

基于RBFNN的专利自动分类研究 被引量:4

Research of Patent Automatic Classification Based on RBFNN
原文传递
导出
摘要 为减少人工分类的不确定性和分类错误,将文本分类技术引入专利自动分类系统,采用径向基函数神经网络(RBFNN)算法完成专利文本的训练和分类,并进行相关测试分析。实验结果表明,采用RBFNN分类器在专利文本自动分类中具有较理想的性能,测试平均F1值在70%以上。 In order to reduce the poor consistency and the errors in manual patent classification, this article introduces text classification technology into patent auto -classification system. It uses the radial basis function neural network algo- rithm to realize the automatic classification of patent text, and analyses the test samples. The experiment results show that this new system has a better classification results, and the average F1 value is higher than 70%
作者 马芳
出处 《现代图书情报技术》 CSSCI 北大核心 2011年第12期58-63,共6页 New Technology of Library and Information Service
关键词 专利自动分类 文本分类 径向基函数神经网络 Patent automatic classification Text categorization Radial basis function neural network
  • 相关文献

参考文献11

  • 1Camus C, Brancaleon R. Intellectual Assets Management:From Pa- tents to Knowledge [ J ]. World Patent Information, 2003,25 ( 2 ) : 155 - 159.
  • 2暴海龙,李金林.专利检索中的IPC和主题词识别方法研究[J].北京理工大学学报(社会科学版),2003,5(5):74-76. 被引量:11
  • 3Iwayama M, Fujii A, Kando N, et al, Overview of Patent Retrieval - Task at NTCIR - 3 [ C ]. In : Proceedings of the ACL - 2003 Workshop on Patent Corpus Processing, Sapporo, Japan. 2003 : 24 - 32.
  • 4Li Y, Bontcheva K, Cunningham H. SVM Based Learning System for F - term Patent Classification [ C ]. In : Proceedings of the 6th NTCIR Workshop Meeting, Tokyo, Japan. 2007 : 15 - 18.
  • 5Li Y, Bontcheva K, Cunningham H. Cost Sensitive Evaluation Meas- ures for F - term Patent Classification [ C ]. In : Proceedings of the 1st International Workshop on Evaluating Information Access ( EVIA), Tokyo, Japan. 2007:44 - 53.
  • 6Doi H,Seki Y,Aono M. A Patent Retrieval Method Using a Hierar- chy of Clusters at TUT [ C ]. In: Proceedings of the 5th NTCIR Workshop Meeting, Tokyo, Japan. 2005:403 - 406.
  • 7Mase H, Iwayama M. NTCIR -6 Patent Retrieval Experiments at Hitachi [ C ]. In : Proceedings of the 6th NTCIR Workshop Meeting, Tokyo, Japan. 2007:403 -406.
  • 8李生珍,王建新,齐建东,朱礼军.基于BP神经网络的专利自动分类方法[J].计算机工程与设计,2010,31(23):5075-5078. 被引量:12
  • 9季铎,蔡云雷,蔡东风,苗雪雷.基于共享最近邻的专利自动分类技术研究[J].沈阳航空工业学院学报,2010,27(4):41-46. 被引量:6
  • 10Haykin S S. Neural Networks : A Comprehensive Foundation [ M ].北京:清华大学出版社,2001:40-42.

二级参考文献30

  • 1郭炜强,戴天,文贵华.基于领域知识的专利自动分类[J].计算机工程,2005,31(23):52-54. 被引量:17
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3Peters C. , Koster C. H. A. Uncertainty - based noise reduction and term selection in text categorization [A]. Advances in Information Retrieval: 24th BCS - IRSG European Colloquium on IR Research [ C ]. Glasgow, 2002 : 25 - 27.
  • 4Larkey L.S. Some issues in the automatic classification of U. S. patents[ A]. AAAI - 98 Workshop on Learning for Text Categorization[ C]. Menlo Park, 1998:87 -90.
  • 5Larkey L.S. A patent search and classification system [ A ]. Proceedings of the 4th ACM conference on Digital Libraries [ C ]. Berkeley, 1999 : 179 - 187.
  • 6Larkey L. S. , Connell M. E. , Callan J. Collection selection and results merging with topically organized US patents and TREC data [A]. Proceedings of the 9th International Conference on Information and Knowledge Management (CIKM) [ C ]. Washington D. C. , 2000:282-289.
  • 7Fall C. J. , T rcsvari A. , Benzineb K. , et al. Automated categorization in the international patent classification [ J]. ACM SIGIR Forum, 2003, 37(1):10-25.
  • 8Iwayama M. , Fujii A. , Kando N. Overview of patent retrieval task at NTCIR-3[A]. ACL-2003 Workshop on Patent Corpus Processing[C]. Sapporo, 2003:24 - 32.
  • 9Li Y. , Bontcheva K. , Cunningham H. SVM based learning system for f-term patent classification[ A]. Proceedings of the 6th NTCIR Workshop Meeting[ C]. Tokyo, 2007 : 15 - 18.
  • 10Li Y. , Bontcheva K. , Cunningham H. Cost sensitive evaluation measures for f - term patent classification [A]. Proceedings of the 1 st International Workshop on Evaluating Information Access (EVIA) [C]. Tokyo, 2007:44 -53.

共引文献24

同被引文献31

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部