期刊文献+

基于Laplacian的局部特征描述算法 被引量:12

Local feature description algorithm based on Laplacian
下载PDF
导出
摘要 为了更好地兼顾特征描述子的鲁棒性和生成复杂度,提出了一种基于Laplacian的局部特征描述算法。分析说明了Laplacian不仅对图像的欧氏变换、缩放及亮度线性变化具有较好的性质,而且能够反映图像的局部结构特征。据此利用高斯型拉普拉斯变换响应建立了一种64维特征描述子,并将该特征描述子应用于特征点匹配。匹配实验结果表明,在图像尺度缩放、旋转、模糊、亮度变化和较小视角变化等多种变换条件下,该描述子不仅能够取得较好的匹配效果,而且匹配速度是尺度不变特征变换(SIFT)的4倍以上。该算法适用于实时性要求较高,存在旋转、尺度缩放、亮度差异、图像压缩变换以及视角变化不大的结构图像间的匹配。 In order to balance the robustness and building complexity of a feature descriptor,a local feature description algorithm based on Laplacian is presented.It is analyzed and illustrated that the Laplacian not only has good properties to Euclidian transformation,zoom,and linear brightness changes of an image,but also can characterize the local structure of the image.On the basis of that,a 64-dimension descriptor is built with the response of Laplacian of Gaussian.Finally,the descriptor is used to match feature points with the absolute distance as similarity measurement.Simulation results indicate that the proposed descriptor can obtain better matching results for the image with zoom,rotation,blurring,illumination varying as well as smaller viewpoint changes,and the matching speed is more than 4 times that of Scale Invariable Feature Transformation(SIFT).The proposed feature description algorithm is suitable for matching the images of structured scenes,for it is insensitive to the image transformation with rotation,zoom,luminance varying,compression or small viewpoint changes.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2011年第12期2999-3006,共8页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目
关键词 局部特征 特征描述子 图像匹配 高斯型拉普拉斯 local feature feature descriptor image matching Laplacian of Gaussian
  • 相关文献

参考文献16

二级参考文献103

  • 1王海霞,徐欣锋,徐抒岩.一种基于不变矩的目标识别方法[J].光学精密工程,2004,12(z2):131-136. 被引量:7
  • 2罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 3梁燕,刘文耀.基于起点预测的自适应交叉-准菱形运动估计算法[J].光学精密工程,2005,13(2):237-246. 被引量:7
  • 4丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 5Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge, UK: Cambridge University Press, 2000.
  • 6Mokhtarian F, Suomela R. Robust Image Corner Detection through Curvature Scale Space. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(12) : 1376 - 1381.
  • 7Mikolajczyk K, Schmid C. Scale and Affine Invariant Interest Point Detectors. International Journal of Computer Vision, 2004, 60 ( 1 ) : 63 - 86.
  • 8Zhang Zhengyou, Deriche R, Faugeras O, et al. A Robust Technique for Matching Two Un-Calibrated Images through the Recovery of the, Unknown Epipolar Geometry. Artificial Intelligence, 1995, 78(1): 87-119.
  • 9Johnson A E, Hebert M. Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21 (5) : 433 - 449.
  • 10Lowe D G. Distinctive Image Features from Scale-lnvariant Keypoints. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91 -110.

共引文献180

同被引文献189

  • 1季春.基于内容的视频检索中的关键帧提取技术[J].情报杂志,2006,25(11):116-119. 被引量:18
  • 2徐伟,王朔中.基于视频图像Harris角点检测的车辆测速[J].中国图象图形学报,2006,11(11):1650-1652. 被引量:29
  • 3MICHEL D, OIKONOMIDIS I, ARGYROS A. Scale invariant and deformation tolerant partial shape matching [J]. Image and Vision Computing, 2011, 29(7): 459-469.
  • 4KROLUPPER F, FLUSSER J. Polygonal shape description for recognition of partially occluded objects[J]. Pattern Recognition Letter, 2007, 28 (9):1002-1011.
  • 5SABER E, XU Y W, TEKALP A M. Partial shape recognition by sub-matrix matching for partial matching guided image labeling[J]. Pattern Recognition, 2005, 38(10): 1560-1573.
  • 6SHOTTON J, BLAKE A, CLIPOLLA R. Multiscale categorical object recognition using contour fragments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 (7) : 1270-1281.
  • 7LU C, ADLURU N, LING H, et al.. Contour based object detection using part bundles[J]. Computer Vision and Image Understanding, 2010, 114: 827-834.
  • 8HOFFMAN D D, SINGH M. Salience of visual parts [J]. Cognition, 1997, 63(1): 29-78.
  • 9SUN K B, SUPER B J. Classification of contour shapes using class segments sets[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005: 727-733.
  • 10BAI X, WANG X, LATECKI L J. Detection and recognition of contour parts based on shape similarity[J]. Pattern Recognition, 2008, 41(7): 2189- 2199.

引证文献12

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部