期刊文献+

带有边缘径向裂纹的固支圆板湿模态分析 被引量:2

Wet mode analysis of completely clamped circular plate with a side radial crack
下载PDF
导出
摘要 基于Rayleigh-Ritz法,分析了置于无限大障板中、单面临水、带有边缘径向裂纹的固支圆板的固有频率和振型。引入角函数对裂纹的影响进行描述,采用薄板假设计算裂纹深度等于板半径的边缘径向裂纹圆板振动的最大动能和最大势能;在无旋、无粘、不可压和板微幅振动的假设条件下,采用速度势描述水体运动并获得了由位移基函数表达的附加动能,并通过Rayleigh-Ritz过程获得流固耦合振动系统的特征矩阵,进而求得湿模态对应的固有频率和振型。结果表明,固有频率降低率整体上随模态阶数的增大而减小,而干、湿模态振型的差别则整体上随模态阶数的增大而增大;水体对对称模态和反对称模态的影响有明显的区别。计算结果与ANSYS数值仿真的结果符合的较好。 In this paper,the free vibration of a completely clamped circular plate with a side crack and in contact with water on one side is investigated based on the Rayleigh-Ritz method.The plate is located at a hole of an infinite baffle and the crack whose depth is equal to the radius of the plate develops along the radial direction.First,the corner functions are introduced to describe the behavior of the cracks,and the Kirchhoff hypothesis is used during the calculation of the maximum strain energy and kinetic energy of the vibrating plate.Second,based on the hypothesis that the plate vibrates in small amplitude and the water is incompressible,inviscid and irrotational,the velocity potential is used to describe the motion of water and the added virtual mass increment expressed by the displacement trial functions is calculated by using Green function method.Then,the characteristics matrix of the vibration system is obtained through Rayleigh-Ritz technique,and the natural frequencies and the corresponding modes are calculated.It is found that the reduction rates of eigenfrequencies due to influence of water decrease with the increasing of mode order but not monotonically,while the differences between dry and wet mode shapes increase with the increasing of mode order on the whole,and the influences of water on the symmetric modes and antisymmetric modes are different.Finally,the results are compared with those gained by numerical simulation and good agreement has been shown.
出处 《振动工程学报》 EI CSCD 北大核心 2011年第6期595-599,共5页 Journal of Vibration Engineering
基金 国家杰出青年科学基金资助项目(50425516) 国家自然科学基金资助项目(10702031)
关键词 流固耦合 裂纹 固支圆板 自由振动 Rayleigh-Ritz fluid-structure interaction crack completely clamped circular plate free vibration Rayleigh-Ritz
  • 相关文献

参考文献13

  • 1Leissa A W, McGee O G, Huang C S. Vibrations of circular plates having V-notches or sharp radial cracks [J]. Journal of Sound and Vibration, 1993,161 (2) : 227-239.
  • 2Williams M L. Surface stress singularities resulting from various boundary conditions in angular corners of plates under bending[A]. Proceedings of the First US National Congress of Applied Mechanics[C]. 1952: 325-329.
  • 3Montero De Espinosa F, Gallego-Juarez J A. On the resonance frequencies of water-loaded circular plates [J]. Journal of Sound and Vibration, 1984, 94 (2): 217-222.
  • 4Kwak M K. Hydroelastic vibration of circular plates [J]. Journal of Sound and Vibration, 1997,201 : 293-303.
  • 5Amabili M. Effect of finite fluid depth on the hydroelastic vibrations of circular and annular plates [J]. Journal of Sound and Vibration, 1996,193(4) : 909- 925.
  • 6Amabili M, Frosali G, Kawk M K. Free vibrations of annular plates coupled with fluids [J]. Journal of Sound and Vibration, 1996,191(5) : 825-846.
  • 7Zhu F. Rayleigh-Ritz method in coupled fluid-structure interacting systems and its applications[J]. Journal of Sound and Vibration, 1995,186 : 543-550.
  • 8Kwak M K. Hydroelastic vibration of rectangular plates[J]. Transactions of the ASME, Journal of Applied Mechanics, 1996,63 : 110-115.
  • 9邹元杰,赵德有.结构在浅水中的振动和声辐射特性研究[J].振动工程学报,2004,17(3):269-274. 被引量:18
  • 10石焕文,尚志远,郭敏.水介质对多种边界条件方板振动频率及辐射效率的影响[J].振动与冲击,2004,23(1):94-97. 被引量:5

二级参考文献27

  • 1赵键.薄板和不可压流体耦合振动的边界元法研究[J].中山大学学报(自然科学版),1996,35(1):7-11. 被引量:5
  • 2Estorff O V. Boundary elements in acoustics, advances and applications. WIT Press, Southampton, 2000: 1-12
  • 3Mathews I C. Numerical techniques for three-dimensional steady-state fluid-structure interaction. J. Acoust. Soc. Am., 1986;79(5):1 317-1 325
  • 4Everstine G C, Henderson F M. Coupled finite element/boundary element approach for fluid-structure interaction. J. Acoust. Soc. Am., 1986, 87(5):1 938-1 947
  • 5Seybert AF, Wu TW, LiWL. Acoupled FEM/BEM for fluid-structure interaction using Ritz-vectors and eigenvalues. ASME Trans, J. Vib. Acoust., 1993;115(2):152-158
  • 6金成定,赵德有.船体振动学.上海:上海交通大学出版社,2000:110-118
  • 7布列霍夫斯基赫ЛM著.分层介质中的波.杨训仁译.第2版.北京:科学出版社,1985:195-198
  • 8刘伯胜,雷家煜.水声学原理.哈尔滨:哈尔滨工程大学出版社,1993:92-95
  • 9Seybert A F, Wu T W. Modified helmholtz integral equation for bodies sitting on an infinite plane. J. Acoust. Soc. Am. , 1989; 85(1):19-23
  • 10Seybert A F, Soenarko B. Radiation and scattering of acoustic waves from bodies of arbitrary shape in a threedimensional half space.ASME Transactions,J.Vib.Acoust.Stress Rel.Dsgn.,1988;110(1):112-117

共引文献26

同被引文献21

  • 1陈香林,张立翔,闫华.应力刚化及流体压缩性对混流式水轮机叶片动力特性的影响分析[J].昆明理工大学学报(理工版),2005,30(6):34-40. 被引量:9
  • 2杨振兴,荣见华,傅建林.三维结构的频率拓扑优化设计[J].振动与冲击,2006,25(3):44-47. 被引量:13
  • 3Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(1): 197--224.
  • 4Mlejnek H P, Schirrmacher R. An engineer's approach to optimal distribution and shape finding [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 106(1/2): 1--26.
  • 5Xie Y M, Steven G P. Evolutionary structural optimization [M]. Berlin: Springer-Verlag, 1997: 77-- 103.
  • 6Sethian J A, Wiegmann A. Structural boundary design via level set and immersed interface methods [J]. Journal of Computational Physics, 2000, 163(2): 489-- 528.
  • 7Pedersen N L. Maximization of eigenvalues using topology optimization [J]. Structural and Multidisciplinary Optimization, 2000, 20(1): 2 -- 11.
  • 8Jianbin D, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps [J]. Structural and Multidisciplinary Optimization. 2007, 34(2): 91 -- 110.
  • 9Amabili M. Vibrations of partially filled cylindrical tanks with ring-stiffeners and flexible bottom [J]. Journal of Sound and Vibration, 1998, 213(2): 259--299.
  • 10Zhou Ding, Liu Weiqing. Bending-torsion vibration of a partially submerged cylinder with an arbitrary cross- section [J]. Applied Mathematical Modeling, 2007, 31(10): 2249--2265.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部