期刊文献+

非圆形截面复合材料机身屈曲优化设计

Buckling Analysis and Optimization Design of Non-cylindrical Fuselage
下载PDF
导出
摘要 为了降低BWB机身弯曲应力、提高屈曲稳定性,在150座BWB民机复合材料三舱室机身结构的基础上,提出了改进的Y形和弧形加强三舱室机身设计模型;利用零阶参数优化算法,对3种机身结构进行了静力与线性屈曲优化分析,获得了较为合理的三舱室机身布局方案,为BWB民机机身设计提供了重要技术参考。 To reduce the bending stress and improve buckling stability,improved Y-brace and arc-brace fuselages is designed based on a composite tri-cabin fuselage of BWB-150.The zero-order parameter optimization arithmetic is used to optimize these three fuselage configurations in static and linear buckling field.A reasonable tri-cabin configuration is obtained by the optimization analyses,thus providing important technical reference for the fuselage design of BWB commercial airplane.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第6期728-731,共4页 Journal of Nanjing University of Aeronautics & Astronautics
基金 中国博士后科学基金(W016312)资助项目 西北工业大学本科重点扶持基金(W002219)资助项目
关键词 翼身融合体 民用飞机 非圆形机身 线性屈曲 优化 blended wing body civil airplane non-cylindrical fuselage linear buckling optimization
  • 相关文献

参考文献9

  • 1朱自强,王晓璐,吴宗成,陈泽民.民机的一种新型布局形式——翼身融合体飞机[J].航空学报,2008,29(1):49-59. 被引量:40
  • 2Liebeck R, Page M A, Rawdon B K, et al. Concepts for advanced subsonic transports[R]. NASA Contractor Report 4624, 1994.
  • 3Liebeck R, Page M A, Rawdon B K. Blended-wing- body subsonic commercial transport[J]. AIAA Paper 98-0438, 1998.
  • 4Liebeck R. Design of the blended-wing-body subsonic transport [C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reno, USA: AIAA, 2002:14- 17.
  • 5廖慧君,张曙光.翼身融合布局客机的客舱设计[J].北京航空航天大学学报,2009,35(8):986-989. 被引量:17
  • 6Mukhopadhyay V. Structural concepts study of noncircular fuselage configurations[C]//World Aviation Congress. Los Angles, USA: [s.n.], 1996:22-24.
  • 7Mukhopadhyay V. Blended-wing-body fuselage structural design for weight reduction[J]. AIAA Paper 2005-2349, 2005.
  • 8Andrew E Love joy. Optimization of blended wing body composite panels using both NASTRAN and genetic algorithm [R]. NASA Contractor Report 214515, 2006.
  • 9郭彤,李爱群,王浩.基于牛顿-拉普森迭代和零阶优化算法的悬索结构找形研究[J].工程力学,2007,24(4):142-146. 被引量:6

二级参考文献30

  • 1Liebeck R H. Design of the blended wing body subsonic transport[ R]. AIAA-2002-0002, 2002.
  • 2Reuther J, Jameson A. Aerodynamic shape optimization of wing and wing-body configuration using control theory[ R ]. AIAA-95- 0123, 1995.
  • 3中国民用航空局.中国民用航空规章第25部:运输类飞机适航标准CCAR-25[S].
  • 4Jenkinson L R, Simpkin P, Rhodes D. Civil jet aircraft design [M]. London: Arnold, 1999:80-104.
  • 5Mukhopadhyay V. Blended-wing-body fuselage structural design for weight reduction[ R]. AIAA-2005-2349, 2005.
  • 6Bradley K R. A sizing methodology for the conceptual design of blended-wing-body transports [ R ]. NASA/CR-2004-213016, 2004.
  • 7[1]Liebeck R H.Design of the blended wing body subsonic transport[J].J of Aircraft,2004,41(1):10-25.
  • 8[3]Liebeck R H,Page M A,Rawdon B K.Blended wing body subsonic commercial transport[R].AIAA 98-0438,1998.
  • 9[4]Bolsunovsky A L,Buzoverga N P,Gurevich B L,et al.Flying wing problems and decisions[J].Aircraft Design,2001,4(4):193-219.
  • 10[5]Roman D,Allen J B,Liebeck R H.Aerodynamic design challenges of the blended wing body subsonic transport[R].AIAA 2000-4335,2000.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部