摘要
如果图G中任意一对距离为2的顶点x,y,有J(x,y)∪J'(x,y)≠Ф,则称G为P3-支配图。本文证明了:设G是n(≥3)阶2-连通P3-支配图,如果对G中任意一对不相邻的顶点x,y,有2|N(x)∪N(y)|+d(x)+d(y)≥2n-5,则G含有Hamilton圈或者G∈{K2,3,K1,1,3}。
A graph G is a P3-dominated graph if J(x,y) UJ'(x,y)≠φ for any pair of vertices x and y of d(x,y) =2. This paper proves that for any pair of non-adjacent vertices x and y in G,which is a 2.-connected P3-dominated graph of order n no less than 3, if 2|N(x)UN(y)|+d(x)+d(y)≥2n-5, then G has a Hamilton cycle or G∈{K2,3,K1,1,3}.
出处
《山东科学》
CAS
2011年第6期8-11,共4页
Shandong Science