期刊文献+

开放Sinai台球中粒子输运性质的分形研究 被引量:1

Fractal analysis of particles transport properties in an open Sinai billiard
下载PDF
导出
摘要 Sinai量子台球能够模拟出混沌性质且数值运算相对简单,成为研究微观体系动力学的理想模型。本文以Sinai开放台球作为理论模型,研究了粒子的逃逸,并对逃逸中的碰撞次数进行了数值计算,得到的结果显示了初始条件对逃逸的重要性。采用简化的盒计数(box-counting)算法分别计算了不同门电压和不同开口宽度对应的分形维数,分析了Sinai台球中的门电压和开口宽度对体系混沌性质的影响。 Sinai quantum billiard is an ideal model to investigate dynamic properties of a microscopic system because it can be used to simulate chaotic properties and the numerical computation is relatively simple. This paper addresses the escape of particles and numerically calculates the collision numbers in escape process with Sinai quantum billiards as a theoretical model Results indicate the significance of initial conditions for escape. We employ a simplified box-counting approach to calculate the fractal dimensions that are corresponding to different gate voltages and different aperture widths. We also analyze the influences.of gate voltage and aperture width in Sinai quantum billiards on chaotic behaviors.
出处 《山东科学》 CAS 2011年第6期22-25,共4页 Shandong Science
基金 国家自然科学基金(10774093 10374061)
关键词 开放台球 混沌性质 分形 分形维数 open billiard chaotic properties fractal fractal dimension
  • 相关文献

参考文献9

  • 1徐学友,李洪云,王树宝,林圣路.正方体量子台球的半经典分析(英文)[J].原子与分子物理学报,2008,25(2):317-320. 被引量:3
  • 2傅怀梁,戴俊,陈贺胜.接有导管的开口运动场台球系统[J].扬州大学学报(自然科学版),2005,8(1):23-27. 被引量:3
  • 3TAYLOR R P, ADAMS J A, DAVIES M, et al. Fabrication of nanostructures with multilevel architecture[ J]. J Vac Sci Technol B, 1993,11(3) : 628 -633.
  • 4HUCKESTEIN B, KETZMERICK R, LEWENKOPF C H. Quantum transport through ballistic cavities : soft vs hard quantum chaos [J]. Phys Rev Lett, 2000, 84(24) :5504 -5507.
  • 5郝柏林.分岔、混沌、奇怪吸引子、湍流及其他——关于确定论系统中的内在随机性[J].物理学进展,1983,13(3):336-408.
  • 6SCHANZ H, SMILANSKY U. Quantization of Sinai' s billiad - A scattering approach [ J ]. Chaos, solitons&Fractals, 1995, 5 (7) : 1289 - 1309.
  • 7OTT E. Chaos in Dynamical Systems [ M ]. New York: Cambridge University Press, 1993.
  • 8李永平,邓善红,高嵩,林圣路.偏心环形开放台球中粒子逃逸动力学的分形性质[J].原子与分子物理学报,2010,27(2):323-326. 被引量:1
  • 9REE S, REICHL L E. Fractal analysis of chaotic classical scattering in a cut-circle billiard with two openings [ J ]. Physical Review E, 2002, 65 (5) : 055205.

二级参考文献22

  • 1陆军,杜孟利.从量子谱到经典轨道:矩形腔中的弹子球[J].物理学报,2004,53(8):2450-2453. 被引量:17
  • 2戴俊,傅怀梁,王文秀,陈贺胜,石康杰,何大韧.一个边界振荡的台球模型[J].扬州大学学报(自然科学版),2004,7(4):27-31. 被引量:2
  • 3徐学友,高嵩,郭文豪,张延惠,林圣路.Semiclassical Analysis of Quarter Stadium Billiards[J].Chinese Physics Letters,2006,23(4):765-767. 被引量:2
  • 4王德华,于永江,林圣路.Quantum spectra and classical periodic orbit in the cubic billiard[J].Chinese Optics Letters,2006,4(6):311-314. 被引量:2
  • 5Huckestein B,Ketzmerick R,Lewenkopf C H.Quantum transport through ballistic cavities:soft vs hard quantum chaos[J].Phys.Rev.Lett.,2000,84:5504.
  • 6Markus C M,Rimberg A J,Westerfelt R M,et al.Conductance fluctuations and chaotic scattering in ballistic microstructures[J].Phys.Rev.Lett.,1992,69:506.
  • 7Gouesbet G,Meunier G C,Grehan G.Periodic orbits in Hamiltonian chaos of the annular billiard[J].Phys.Rev.E,2001,65:016212.
  • 8Edward O.Chaos in dynamical systems[M].USA:Cambridge University Press,1993.
  • 9Suhan R,Reichl L E.Fractal analysis of chaotic classical scattering in a cut-circle billiard with two openings[J].Phys.Rev.E,2002,65:055205.
  • 10BORGONOVI F, CASATI G, LIB W. Diffusion and localization in chaotic billiards [J]. Phys Rev Lett,1996, 77: 4744-4747.

共引文献10

同被引文献6

  • 1徐学友,张延惠,黄发忠,林圣路,杜孟利.二维椭圆量子台球中的谱分析[J].物理学报,2005,54(10):4538-4542. 被引量:9
  • 2席德勋,席沁.非线性物理学[M].南京:南京大学出版社,2007:38-42.
  • 3郝柏林.分岔、混沌、奇怪吸引子、湍流及其他——关于确定论系统中的内在随机性[J].物理学进展,1983,13(3):336-408.
  • 4HANSEN P, MITCHELL K A, DELOS J B. Escape of trajectories from a vase-shaped cavity[J]. Physical Review E, 2006, 73 (6) : 066226.
  • 5REE S, REICHL L E. Fractal analysis of chaotic classical scattering in a cut-circle billard with two openings [ J ]. Physical Review E, 2002, 65 (5) : 055205.
  • 6JIANG Guo-Hui,ZHANG Yan-Hui,BIAN Hong-Tao,XU Xue-You.Fractal Analysis of Transport Properties in a Sinai Billiard[J].Chinese Physics Letters,2011,28(12):67-69. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部