期刊文献+

二阶脉冲微分方程m点边值问题的正解 被引量:3

Positive solutions to m-point boundary value problems of second order impulsive differential equations
下载PDF
导出
摘要 利用Leggett-Williams不动点定理,研究一类二阶脉冲微分方程非局部(m点)边值问题正解的存在性。在某些条件下,得到了它至少存在3个正解u1,u2,u3,使得‖u1‖<d,a<α(u2)且‖u3‖≥d,α(u3)≤a。 By using the Leggett-williams fixed point theorem, this paper studies the existence of positive solutions to m-point boundary value problems of the second order impulsive differential equations. In some conditions, it shows that the above problem has at least three positive solutions u1 ,u2 and so that || U1 || 〈d,a〈a(u2) and || u3 || ≥d, a(u3) ≤a.
出处 《河北科技大学学报》 CAS 北大核心 2011年第6期519-523,共5页 Journal of Hebei University of Science and Technology
基金 国家自然科学基金资助项目(10971045) 河北省自然科学基金资助项目(A2009000664)
关键词 正解 M点边值问题 Leggett—Williams不动点定理 positive solution m-point boundary value problem Leggett-Williams fixed point theorem
  • 相关文献

参考文献14

  • 1BAINOV D D, SIMEONOV P S. Impulsive Differential Equations: Periodic Solutions and Applications[M]. Harlow: Longman Science and Technical, 1993.
  • 2BAINOV D D, SIMEONOV P S. Systems with Impulse Effect[M]. Chichister: Eillis Horwood, 1989.
  • 3LI L J, CABACA A, LIZ E. Boundary value problems for higher ordinary differential equations with impulse[J]. Nonlinear Analysis, 1998, 32: 775-786.
  • 4JANKOWSKI T. Positive solutions of three point boundary value problems for second order impulsive differential equations with advanced arguments[J]. Appl Math Comput, 2008, 197: 179-189.
  • 5YAN Ju rang. Existence of positive periodic solutions of impulsive functional differential equations with two parameters[J]. J Math Anal Appl, 2007, 327: 854-868.
  • 6LAKSHMIKANTHAM V, BAINOV D D,SIMEONOV P S. Theory of impulsive differential equations[M]. Singapore: World Scientific, 1989.
  • 7GUO Yan-ping, GE Wei-gao. Positive solutions for three point boundary value problems with dependence on the first order derivative[J]. J Math Anal Appl, 2004, 290: 291-301.
  • 8LI Jian-li, SHEN Jian-hua. Multiple positive solutions for a second-order three point boundary value problem[J]. Appl Math Comput, 2006, 182: 258-268.
  • 9LIU Xiu-jun, QIU Ji-qing, GUO Yah ping. Three positive solutions for second-order m-point boundary value problems[J]. Appl Math Comput, 2004, 156:733-742.
  • 10MA Ru-run. Positive solutions for nonlinear nonhomogeneous m-point boundary value problems[J]. Comput Math Appl, 2004, 47: 689-698.

二级参考文献9

  • 1张国伟,孙经先.奇异(k,n-k)多点边值问题的正解[J].数学学报(中文版),2006,49(2):391-398. 被引量:11
  • 2JIANG Da-qing, LIU Hui-zhao. Existence of positive solutions to (k, n-k) conjugate boundary value problems[J]. Kyushu J Math, 1999, 53(1):115-125.
  • 3XI Shou-liang, JIA Mei,JI H ui-Peng. Positive solutions of boundary value problems for systems of second-order differential equations with integral boundary condition on the half-line[J]. Electronic Journal of Qualitative Theory of Differential Equations,2009,31:1-13.
  • 4HU Ling,WANG Liang-long. Multiple positive solutions of boundary value problems for systems of nonlinear second-order differential equations[J]. J Math Anal Appl, 2007,335:1 052-1 060.
  • 5JIANG Wei-hua,CHEN Zhi-hong. Positive solutions for systems of two-point (k, n-k) conjugate boundary value problems [A]. 2010 First International Conference on Cellular, Molecular Biology,Biophysics and Bioengineering[C]. [s. L. ] :[s. n. ]2010. 420-422.
  • 6KRASNOSELSKII M. Positive Solutions of Operator Equations[M]. Groningen.. Noordhoof, 1964.
  • 7董士杰,周长杰.带p-Laplacian算子时滞微分方程多点边值问题的正解[J].河北科技大学学报,2010,31(5):385-389. 被引量:2
  • 8王斌,江卫华,黄晓芹,李国刚.带有p-Laplacian算子的二阶微分方程组多个正解的存在性[J].河北科技大学学报,2011,32(1):15-19. 被引量:2
  • 9蒋达清.奇异(k,n-k)共轭边值问题的正解[J].数学学报(中文版),2001,44(3):541-548. 被引量:19

共引文献2

同被引文献24

  • 1Zheng Haiyan (Dept. of Math., College of Huangshan, Huangshan 245041, Anhui) Lu Shiping (College of Math. and Computer Science, Anhui Normal University, Wuhu 241000, Anhui).POSITIVE SOLUTIONS TO FOURTH ORDER MULTI-POINT BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN OPERATOR[J].Annals of Differential Equations,2009,25(1):105-113. 被引量:2
  • 2索秀云,郭少聪,张继叶,郭彦平.四阶非局部边值问题方程组正解的存在性[J].河北科技大学学报,2012,33(3):197-201. 被引量:3
  • 3刘玉敬,郭少聪,郭彦平.带有积分边值条件的三阶边值问题正解的存在性[J].河北科技大学学报,2012,33(2):93-96. 被引量:6
  • 4郭少聪,郭彦平,张素芬.带2个参数的二阶脉冲微分方程3点边值问题的正解[J].河北科技大学学报,2012,33(2):97-102. 被引量:1
  • 5AGARWAL R P,O'REGAN D. Infinite Interval Problems for Differential,Difference and Integal Equations[M].Dordrecht,the Netherlands:Kluwer Academic Publishers,2001.
  • 6AGARWAL R P,O'REGAN D. Nonlinear boundary value problems on the semi-infinite interval:An upper and lower solution approach[J].Mathematika,2002.129-140.
  • 7BAXLEY J V. Existence and uniqueness for nonlinear boundary value problems on infinite interval[J].Journal of Mathematical Analysis and Applications,1990.127-133.
  • 8JIANG D,AGARWAL R P. A uniqueness and existence theorem for a singular third-order boundary value problemon[0,+∞)[J].Applied Mathematics Letters,2002.445-451.
  • 9MAR. Existence of positive solution for second-order boundary value problems on infinite intervals[J].Applied Mathematics Letters,2003.33-39.
  • 10LIAN H,GE W. Solvability for second-order three-point boundary value problems on a half-line[J].Applied Mathematics Letters,2006,(10):1000-1006.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部