期刊文献+

新的RSA-TBOS广义签密方案

New RSA-TBOS Generalized Signcryption Scheme
下载PDF
导出
摘要 为了抵抗适应性选择消息攻击、提高签名生成效率、加强秘密共享,提出一种新的RSA-TBOS广义签密方案.与韩益亮的广义签密方案相比,本方案是基于RSA大整数分解的困难性,且密钥长度的下限为160bits,能够实现短签密.其计算量大小介于韩益亮的方案和J.Malone-Lee的方案之间.同时,由于方案的签名是两部分消息经过随机化填充后的连接,因此,可以抵抗中间相遇攻击.经过证明,方案IND-CCA2是安全的. To resist adaptive chosen ciphertext attack, improve efficiency of the signcryption generation and strengthen the possibility to share secret, a publicly verifiable generalized signcryption scheme is put forword. Compared with Han Yi-liang's our scheme ismainly based on the difficulty of the decomposition of RSA biginteger, and the length of the secret key in the scheme is not more than 160 bites and it can realize short signcryption. The computational complexity of our scheme is between that of Han yi-liang's and Malone-Lee's. Because the signature in the new scheme is the linkage of two information after padding at random, it can resist the middle meeting attack. Finally, parts of IND-CCA2 security of the new seheme is proved.
出处 《河北北方学院学报(自然科学版)》 2011年第6期20-28,共9页 Journal of Hebei North University:Natural Science Edition
基金 安徽省教育厅自然科学项目(KJ2010B059) 安徽科技学院安徽省自然科学基金预研项目(ZRC2011274)
关键词 签密 广义签密 数字签名 可公开验证 signcryption generalized signcryption digital signature public verifiable
  • 相关文献

参考文献16

  • 1Zheng Y. Digital signcryption or how to achieve cost (signature&encryption) +cost (signature) +cost (encryption) [A]. Kaliski BS. Proceedings of CRYPTO' 97 [C]. Berlin: Springer-Verlag, 1997:165-179.
  • 2Nalla D, Reddy KC. Signcryption scheme for identity-based cryptosystems [EB/OL]. http: //wenku. baidu, com/ view/ 60fcf68a84868762caaed58dHhtml.
  • 3Hwang RJ, Lai CH, Su FF. An efficient signcryption scheme with forward secrecy based on elliptic curve [J]. Appl Math Comput, 2005, 16 (07): 870-881.
  • 4张串绒,肖国镇.一个可公开验证签密方案的密码分析和改进[J].电子学报,2006,34(1):177-179. 被引量:16
  • 5Tan CH. Analysis of improveed signcryption scheme with key privacy [J]. Inform Proc Lett, 2006, 99 (04) 135-138.
  • 6彭长根,李祥,罗文俊.一种面向群组通信的通用门限签密方案[J].电子学报,2007,35(1):64-67. 被引量:14
  • 7邱红丽,曹珍富.基于强RSA假定的前向安全签名方案[J].计算机工程,2005,31(9):64-66. 被引量:3
  • 8Mao WB. Modern Cryptography: Theory and Practice [M].北京:电子工业出版社,2004,7.
  • 9Lee JM, Mao W. Two birds one stone: signcryption using RSA [A]. Okamoto T. Proceedings of the RSA Conferenee2003 [C]. Berlin: Springer-Verlag, 2003:210-224.
  • 10韩益亮,杨晓元.ECDSA可公开验证广义签密[J].计算机学报,2006,29(11):2003-2012. 被引量:29

二级参考文献48

  • 1Anderson R.Two Remarks on Public-key Cryptology.From Invited Lecture,Fourth ACM Conference on Computer and Communications Security.http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-549.pdf,1997-04
  • 2Bellar M ,Miner S K.A Forward-secure Digital Signature Scheme.Advance in Cryptology-CRYPTO'99,Lecture Notes in Computer Science,1999: 431-448
  • 3Krawczyk H.Simple Forward-secure Signature from Any Signature Scheme.In Seventh ACM Conference on Computer and Communication Security,ACM,2000-11-01
  • 4Abdalla M,Reyzin L.A new Forward-secure Digital Signature Scheme.A Dance in Cryptology-ASIACRYPT 2000,Lecture Notes in Computer Science,2000: 116-129
  • 5Itkis G ,Reyzin L.Forward-secure Signatures with Optimal Signing and Verifying.Advances in Cryptology-CRYPTO'01,Lecture Notes in Computer Science,2001,2139:332-354
  • 6Tzeng W G ,Tzeng Z J.Robust Key-evolving Public Key Encryption Schemes.Lecture Notes in Computer Science,2002: 61-72
  • 7Li Biao,Cao Zhenfu,Zhang Shengheng.Infinite Resilient Key Evolving Scheme.International Conference on Computer Communication,ICCC'02,2002
  • 8Y L Zheng.Signcryption and its applications in efficient public key solutions[A].LNCS 1397,in Information Security Workshop (ISW′97)[C].Berlin:Springer-Verlag,1998.291-312.
  • 9H Petersen,M Michels.Cryptanalysis and improvement of signcryption schemes[J].IEEProceedings-Computers and Digital Techniques.1998,145(2):149-151.
  • 10W H He,T C Wu.Cryptanalysis and improvement of Petersen-michels signcryption scheme[J].IEE Proceedings-Computers and Digital Techniques.1999,146(2):123-124.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部