期刊文献+

基于3S技术的武汉城市湿地景观变迁

Research on Wetland Landscape Change in Wuhan City Based on 3S Technology
下载PDF
导出
摘要 采用3S技术,以武汉城区为研究区,采用1991年、2003年Landsat-TM影像及2009年的CBERS02B-CCD影像为数据源,运用多尺度影像分割与目视解译相结合的方法提取3期湿地信息,并分析武汉城区近18年来湿地景观格局动态变迁。结果表明,近18年间城市湿地总面积减少,斑块的数目增加,破碎程度增加,平均斑块形状指数减少,湿地景观多样性指数下降,结合度减少,人类活动对湿地景观的干扰增强,城市扩展在一定程度对湿地景观格局变迁的影响很大,城市建设使得湿地空间呈现日益缩小的趋势,湿地保护形势不容乐观。 This thesis had taken 3S technology as its research area for Wuhan City. It had analyzed the wetland landscapes pattern changes in Wuhan City in the recent eighteen years by using the Landsat-TM images in year 1991 as well as in 2003, and CBERS02B-CCD images of year 2009 as its data source, and by extracting wetlands information through the method of multi-scale image segmentation and visual interpretation. The results show that the city nearly eighteen years total area of wetland reduced ,the number of patches increased, fragmentation level increased, mean patch shape index reduction, wetland landscape diversity index decreased , combined with the decrease of human activities on wetland landscape disturbance increased, urban expansion has greatly affected the wetland landscape pattern changes, urban space makes wetlands shrinking trend, wetland protection is not optimistic.
出处 《地理空间信息》 2011年第6期85-88,2,共4页 Geospatial Information
基金 国家科技支撑计划资助项目(2006BAD23B-01)
关键词 3S技术 动态变化 湿地景观格局 武汉城区 3S Technology,dynamic change,wetland landscape pattern,Wuhan City
  • 相关文献

参考文献8

二级参考文献35

  • 1李德仁.论RS,GPS与GIS集成的定义、理论与关键技术[J].遥感学报,1997,1(1):64-68. 被引量:373
  • 2Blaschke T, Strobl J. What' s wrong with pixels? Some recent developments interfacing remote sensing and GIS [J]. GIS-Zeitschrifi fur Geoinformations systeme, 2001, 6: 12-17.
  • 3Maselli F, Rudolf A, Conese C. Fuzzy Classification of Spatially Degraded Thematic Mapper Data for the Estimation of Sub-Pixel Components [J]. International Journal of Remote Sensing, 1996, 17:537-551.
  • 4Foody G. Image Classification with a Neural Network: from Completely-crisp to Fully Fuzzy Situations [M]. Advances in remote sensing and GIS analysis. Chichester: Wiley & Son, 1999, 17-37.
  • 5Skidmore A, Turner B, Brinkhof W, Knowles E. Performance of Neural Network: Mapping Forests Using GIS and Remotely Sensed Data [J]. ISPRS Journal of Photogrammetric Engineering & Remote Sensing, 1997, 63: 501-514.
  • 6TownshendJ, HuangC, KalluriS, DefriesR, etal. Beware of perpixel characterisation of land cover. International. Journal of Remote Sensing, 2000, 21(4): 839-843.
  • 7Gorte B. Probabilistic Segmentation of Remotely Sensed Images. Trento: ITC Publication Series No. 63, 1998.
  • 8Baatz M, Schape A. Multiresolution Segmentation - an Optimization Approach for High Quality Multi-scale Image Segmentation [C]. In:STROBL, J. et al. (Hrag.): Angewandte Geographische Informations verarbeitung XII. Beitrage zum AGIT-Symposium Salzburg 2000
  • 9BlaschkeT, LangS, LorupE, etal. Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications [J]. Environmental Information for Planning, 2000, 2: 555-570.
  • 10Lobo A, Chic O, Casterad A. Classification of Mediterranean Crops with Multisensor Data: Per-pixel versus Per-object Statistics and Image Segmentation [J]. International Journal of Remote Sensing,1996, 17: 2358-2400.

共引文献271

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部