摘要
针对一类非线性非高斯系统的滤波问题,在分析均差滤波算法和高斯和滤波算法的基础上,提出一种基于均差滤波的高斯和滤波算法,适于处理非线性非高斯系统的滤波问题.对于似然密度位于条件转移概率密度拖尾处的情况,与传统的粒子滤波算法相比,所提算法能提高滤波的精度和实时性.仿真实验验证了新算法的有效性.
Based on analyzing divided difference filter(DDF) and Gaussian sum filter(GSF), a GSF-based DDF algorithm is developed for nonlinear dynamic state space(DSS) models with non-Gaussian noise, which is suitable for the filtering problem of nonlinear/non-Gaussian systems. When the likelihood function appeares at the tall of the transfer probability density, the proposed algorithm can improve the precision of nonlinear/non-Gaussian filtering compared with the traditional particle filter(PF). Experiments show that the proposed method works well in the filtering for DSS models with non-Gaussian noise.
出处
《控制与决策》
EI
CSCD
北大核心
2012年第1期129-134,共6页
Control and Decision
基金
国家自然科学基金项目(60904097)
教育部留学回国人员科研启动基金项目
国防基础科研计划项目(B1420080209-08)
关键词
非线性非高斯滤波
贝叶斯统计
均差滤波
高斯和滤波
nonlinear non-Gaussian niltering
Bayesian estimation
divided difference filter
Gaussian sum filter