期刊文献+

基于均差滤波与高斯和的非线性非高斯系统滤波算法 被引量:6

Nonlinear non-Gaussian system filtering based on Gaussian sum and divided difference filter
原文传递
导出
摘要 针对一类非线性非高斯系统的滤波问题,在分析均差滤波算法和高斯和滤波算法的基础上,提出一种基于均差滤波的高斯和滤波算法,适于处理非线性非高斯系统的滤波问题.对于似然密度位于条件转移概率密度拖尾处的情况,与传统的粒子滤波算法相比,所提算法能提高滤波的精度和实时性.仿真实验验证了新算法的有效性. Based on analyzing divided difference filter(DDF) and Gaussian sum filter(GSF), a GSF-based DDF algorithm is developed for nonlinear dynamic state space(DSS) models with non-Gaussian noise, which is suitable for the filtering problem of nonlinear/non-Gaussian systems. When the likelihood function appeares at the tall of the transfer probability density, the proposed algorithm can improve the precision of nonlinear/non-Gaussian filtering compared with the traditional particle filter(PF). Experiments show that the proposed method works well in the filtering for DSS models with non-Gaussian noise.
出处 《控制与决策》 EI CSCD 北大核心 2012年第1期129-134,共6页 Control and Decision
基金 国家自然科学基金项目(60904097) 教育部留学回国人员科研启动基金项目 国防基础科研计划项目(B1420080209-08)
关键词 非线性非高斯滤波 贝叶斯统计 均差滤波 高斯和滤波 nonlinear non-Gaussian niltering Bayesian estimation divided difference filter Gaussian sum filter
  • 相关文献

参考文献15

  • 1Anderson B D O, Moore J B. Optimal filtering[M]. Englewood Cliffs: Prentice-Hall, 1979: 36-59.
  • 2Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proc of IEEE, 2004, 92(3): 401-422.
  • 3Merwe R. Sigma-point filters for probabilistic inference in dynamic state space models[Online]. Available:http://www.cse.ogi.edu/rudmerwe/pubs/index.htm, 2004.
  • 4Schei T S. A finite difference method for linearizing in nonlinear estimation algorithms[J]. Automatica, 1997, 33(11): 2051-2058.
  • 5Norgaard M, Poulsen N K, Ravn O. New developments in state estimation of nonlinear systems[J]. Automatica, 2000, 36(11): 1627-1638.
  • 6Norgaard M, Poulsen N K, .Ravn O. Advances in derivative-free state estimation for nonlinear systems[R]. Lyngby: Department of Mathematical Modeling, Technical University of Denmark, 2000.
  • 7Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Trans on Automatic Control, 2000, 45(5): 910-927.
  • 8Gordon N J, Salmond D J, Smith A E Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proc - F: Radar and Signal, 1993, 140(2): 107-113.
  • 9Arulampalam M S, Maskell S, Gordonv N, et al. A tutorial on particle filters for online nonlinear/non- Gaussian Bayesian tracking[J]. IEEE Trans on Signal Processing, 2002, 50(2): 174-188.
  • 10Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo[J]. Proc of IEEE, 2007, 95(4): 899-924.

同被引文献60

  • 1宁晓菊,梁军利.基于UKF的高斯和滤波算法[J].计算机仿真,2006,23(12):100-103. 被引量:10
  • 2康莉,谢维信,黄敬雄.基于unscented粒子滤波的红外弱小目标跟踪[J].系统工程与电子技术,2007,29(1):1-4. 被引量:9
  • 3LI G L, SUN F M, CHENG N. Performance analysis of UKF for nonlinear problems[C]. Third International Symposium on Intelligent Information Technology Application, 2009:209-212.
  • 4KAZUFUMI I, XIONG K Q. Gaussian filters for non- linear filtering problems[J]. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927.
  • 5IENKARAN A, SIMON H. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
  • 6LIU S L, XU T Y. Algorithm of 3-D single observer passive location with the extended Kalman particle filter[C]. 1st International Conference on Information Science and Engineering, 2009: 4704-4707.
  • 7JAYESH H K, PETAR M D. Gaussian sum particle filtering for dynamic state space models[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2001: 3465-3468.
  • 8Gao Song,Gao Min,Xiao Qin-kun. Multisensor tracking of a maneuvering target in clutter with proposed parallel updating approach[A].Xi’an,2012.344-351.
  • 9Rahmati H,Khaloozadeh H,Ayati M. Novel approach for nonlinear maneuvering target tracking based on input estimation[A].Bangkok,2012.4415-4423.
  • 10Leonardo F U,Paul K,Moshe K. Optimal tracking index relationship for random and deterministic target maneuvers[A].Atlanta,2012.999-1003.

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部