摘要
为合理控制生物炭池的反冲洗过程,改善其整体运行性能,试验以反冲洗出水浊度、反冲洗前后有机物的去除率和炭池的生物量、生物活性的变化等为评价指标,比较分析3种不同的气水联合反冲洗方式对生物炭池运行效果的影响.结果表明,间歇式气水联合反冲洗更适合于生物炭池,反冲洗后生物活性明显升高,比反冲洗前增加了62.5%;而气+水的反冲洗方式和气水混合+水冲的反冲洗方式的生物活性增加率为55.6%、38.5%.间歇式反冲洗308h后,反应器能恢复运行性能,UV254去除率达60.0%.反冲洗出水的类富里酸荧光峰很弱,而以低激发波长类色氨酸(峰S)和高激发波长类色氨酸(峰T)为主,这来源于被冲刷下来的微生物残片.三维荧光光谱也表明,间歇式气水联合反冲洗容易将微生物残片冲刷干净.
To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing.
出处
《环境科学》
EI
CAS
CSCD
北大核心
2012年第1期124-128,共5页
Environmental Science
基金
教育部科技创新工程重大项目培育基金项目(N02008071)
重庆市城乡建设委员会科技项目(2011第115号)
关键词
生物炭
反冲洗
气水联合
间歇式
荧光
biological activated carbon( BAC )
backwashing
water and air combination
intermittent
fluorescence