期刊文献+

基于SEM图像的低维纳米材料自动分类方法 被引量:2

Automatic Classification Method for Low-Dimensional Nanomaterials Based on SEM Image
下载PDF
导出
摘要 针对传统方法在低维纳米材料形貌检测和分类鉴别方面的不足,提出了一种基于扫描电子显微镜(SEM)图像的低维纳米材料自动分类方法.以纳米材料的SEM图像为基础,利用小波包分解技术对材料表面纹理特征进行提取,通过将纹理特征与支持向量机(SVM)相结合,实现了纳米材料的自动分类.该方法具有检测速度快、精度高、无损耗等诸多优点,可用于纳米材料大规模生产中的自动检测.对16种不同类别材料的SEM图像仿真结果表明,该方法的分类精度能够达到93.75%,证明了其在实际工程中的有效性. In order to overcome the deficiencies of traditional morphology detection methods in classifica- tion and identification of low-dimensional nanomaterials, a novel low-dimensional nanomaterial automatic classification method based on scanning electron microscope (SEM) image was proposed. Based on the SEM images of nanomaterials, the texture features of the material surfaces were extracted by wavelet pack- et decomposition. Besides, the nanomaterials were classified by combining the texture features with sup- port vector machine(SVM). Due to many advantages like fast detection speed, high precision and no loss,the method can be used for automatic detection of nanomaterials in large-scale production. The ex- periments with 16 kinds of nanomaterials indicate that the classification accuracy rate is 93.75% , thus the validity of this method in practical engineering is verified.
出处 《纳米技术与精密工程》 EI CAS CSCD 2012年第1期24-29,共6页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(61002030) 教育部博士点基金新教师项目(20070056104)
关键词 低维纳米材料 自动分类 纹理分析 小波包 支持向量机(SVM) low-dimensional nanomaterial automatic classification texture analysis wavelet packet support vector machine(SVM)
  • 相关文献

参考文献13

  • 1李毅,阮秋琦.应用支持向量机的纹理分类[J].通信学报,2005,26(1):114-119. 被引量:10
  • 2Sayes C M,Gobin A M, Ausman K D, et al. Nano-C60 cyto- toxicity is due to lipid peroxidation [ J ]. Biomaterials, 2005, 26 (36) :7587-7595.
  • 3杨英歌,吴润,从善海.分形图像分析及其在纳米ZnO中的应用[J].材料导报,2004,18(F04):140-141. 被引量:3
  • 4周红秀,李鸿琦,张振宇.基于小波变换的STM图像处理[J].纳米技术与精密工程,2005,3(1):60-63. 被引量:1
  • 5Chassagneux F, Epicier T, Toutois P, et al. Texture, structure and chemistry of a boron nitride fibre studied by high resolu- tion and analytical TEM [ J ]. Journal of the European Ceram- ic Society, 2002,22 ( 13 ) :2415-2425.
  • 6Dupont L, Grugeon S, Laruelle S, et al. Structure, texture and reactivity versus lithium of chromium-based oxides films as revealed by TEM investigations [ J ]. Journal of Power Sources, 2007,164 ( 2 ) : 839-848.
  • 7宓一鸣.纳米科技研究现状及发展趋势[J].上海工程技术大学学报,2002,16(3):172-180. 被引量:3
  • 8Sawant P D, Nicolau D V. Nano-topographic evaluation of highly disordered fractal-like structures of immobilized oligo- nucleotides using AFM [ J]. Materials Science and Engi- neering, 2006,132 ( 1/2) : 147-150.
  • 9Steinwart I, Christmann A. Support Vector Machines [ M]. New York : Springer,2008.
  • 10苏子美,郭建英,刘瑾.脉搏波的频域特征提取与自动识别技术[J].纳米技术与精密工程,2010,8(1):70-74. 被引量:18

二级参考文献111

  • 1朱华,葛世荣.结构函数与均方根分形表征效果的比较[J].中国矿业大学学报,2004,33(4):396-399. 被引量:33
  • 2王劲松,叶高翔,许宇庆,张其瑞.无规分形衬底上银薄膜的I-V特性[J].物理学报,1994,43(10):1688-1692. 被引量:4
  • 3张玉勤,董显平,吴建生.(Cr-Si-Ni)/Si薄膜的微观结构和电阻率[J].中国有色金属学报,2005,15(5):746-750. 被引量:8
  • 4杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 5Wei L Y, Chow P. Frequency distribution of human pulse spectra[ J]. IEEE Trans Biomed Eng, 1985, BME-32 (3) : 245 -246.
  • 6Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy: A new tool for analysis of short duration brain electrical signals [J]. Journal of Neuroscience Methods, 2001, 105( 1 ) :65-75.
  • 7Sello S. Wavelet entropy and the multi-peaked structure of solar cycle maximum [ J ]. New Astronomy, 2003, 8 (2) : 105-117.
  • 8Yordanova J, Kolev V, Rosso O A. Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance [ J ]. Journal of Neuroscience Methods, 2002, 117(1) : 99-109.
  • 9LauEO Y, Tse H F, Chan R H W, et al. Prediction of aortic augmentation index using radial pulse transmissionwave analysis [ J]. J Hypertens, 2006, 24(4) : 723-730.
  • 10Li B N, Dong M C, Vai M I,et al. An intelligent mobile cardiovascular monitoring device based on pulse wave [ C ] // Proceedings of ICISIP. California, USA, 2005: 463-468.

共引文献108

同被引文献62

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部