期刊文献+

基于最佳方向性梯度通量血管增强的冠脉分割 被引量:1

Coronary Arteries Segmentation Based on Optimal Oriented Flux Vessel Enhancement
下载PDF
导出
摘要 针对多层螺旋CT(MSCT)冠状动脉分割时受周围静脉血管等组织的影响而容易发生泄漏的问题,提出了一种基于最佳方向性梯度通量(OOF)血管增强的分割方法.首先,得到原始图像的梯度向量场,选择合适的半径,计算球面特定方向上投影梯度的通量,寻找使得流向球体内部的投影通量最小的最佳方向.求解最佳方向上梯度通量矩阵的特征值,利用特征值构造血管相似度响应函数,对冠状动脉进行增强,之后采用自适应阈值的区域生长方法将冠脉血管分割出来.实验结果表明,该算法受冠脉周围组织的影响较小,避免了泄漏的发生,而且能提取到较多的细小分支. A segmentation algorithm based on optimal oriented flux (OOF) vessel enhancement was pro- posed to extract coronary arteries in cardiac multislice computed tomography (MSCT) images by elimina- ting influence of nearby structures such as vein. First, the gradient vector field was calculated, and then a series of radiuses were chosen to compute the OOF on the sphere surface. The optimal direction in which the inward projected flux is minimal coincides with that in which the vessel lies in, so the eigenval- ues can be calculated with which vessel similarity function will be constructed to enhance the original da- ta. Hereafter, an adaptive threshold region growing is executed to extract the coronary arteries. Experi- mental results illustrate that the algorithm is not easily influenced by the structure around the arteries and thus over-segmentation can be avoided. Simultaneously, more thin branches can be obtained.
出处 《纳米技术与精密工程》 EI CAS CSCD 2012年第1期73-77,共5页 Nanotechnology and Precision Engineering
关键词 图像处理 冠状动脉血管分割 最佳方向性梯度通量(OOF) 血管增强 多层螺旋CT(MSCT) 区域生长 image processing coronary arteries segmentation optimal oriented flux(OOF) vessel en-hancement muhislice CT(MSCT) region growing
  • 相关文献

参考文献10

  • 1Furukawa H, lwasaki K, Samukawa M, et al. Impact of preoperative 64-row multislice computed tomography for con- genital aortic stenosis : Report of a case [ J ]. Kyobu C, eka, 2010,63 (12) : 1078-1081.
  • 2Seifarth H, Heindel W, Maintz D, et al. Imaging of coro- nary stents using muhislice computed tomography [J]. Radiologe, 2010,50 ( 6 ) : 507-509.
  • 3Lesage D, Angelini E D, Bloch I, et al. A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes [J ]. Medical Imaging Analysis, 2009, 13(6) : 819-845.
  • 4Reinhard B, Thomas P, Christian J, et al. Liver segment approximation in CT data for surgical resection planning [ C]//Medical Imaging 2004: Image Processing, Proceed- ings of SPIE. San Diego, USA ,2004,5370 : 1435-1446.
  • 5Erdt M, Raspe M, Suehling M. Automatic hepatic vessel segmentation using graphics hardware [ J ]. Lecture Notes in Computer Science, 2008, 5128:403-412.
  • 6Orlowski P, Orkisz M. Efficient computation of Hessian- based enhancement filters for tubular structure in 3D images [J]. IRBM, 2009, 30(3): 128-132.
  • 7Christian B, Horst B. A novel approach for detection of tu- bular objects and its application to medical image analysis [ J]. Lecture Notes in Computer Science, 2008,5096 : 163- 172.
  • 8Alexander V, Kaleem S. Flux maximizing geometric flows [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligertce, 2002, 24 ( 12 ) : 1565-1578.
  • 9Law M W K, Chung A C S. Three dimensional curvilinear structure detection using optimally oriented flux [ J ]. Lecture Notes in Computer Science, 2008,5305 : 368-382.
  • 10Lesage D, Rasch M. System and Method for Coronary Artery Segmentation of Cardiac CT Volumes : USA, US20070031019- A1 [ P]. 2007-02-08.

同被引文献11

  • 1J Abdulla,S Z Abildstrom,O Gotzsche,et al..64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography:A systematic review and meta-analysis[J].European Heart Journal,2007,28(24):3042-3050.
  • 2D Kang,P J Slomka,R Nakazato,et al..Automated knowledge-based detection of nonobstructive and obstructive arterial lesions from coronary CT angiography[J].Medical Physics,2013,40(4):041912.
  • 3B M Kelm,S Mittal,Y Zheng,et al..Detection,grading and classification of coronary stenoses in computed tomography angiography[M].//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2011.Berlin:Berlin Heidelberg Springer,2011:25-32.
  • 4S Wesarg,E A Firle.Segmentation of vessels:the corkscrew algorithm[C].SPIE,2004,5370:1609-1620.
  • 5A F Frangi,W J Niessen,K L Vincken,et al..Multiscale vessel enhancement filtering[M].//Medical Image Computing and Computer-Assisted Interventation - MICCAI′98.Berlin:Berlin Heidelberg Springer,1998:130-137.
  • 6E W Dijkstra.A note on two problems in connexion with graphs[J].Numerische Mathematik,1959,1(1):269-271.
  • 7O Wink,W J Niessen,M A Viergever.Fast delineation and visualization of vessels in 3-D angiographic images[J].IEEE Transactions on Medical Imaging,2000,19(4):337-346.
  • 8W E Lorensen,H E Cline.Marching cubes:A high resolution 3D surface construction algorithm[C].ACM Siggraph Computer Graphics,1987,21(4):163-169.
  • 9A Kanitsar,D Fleischmann,R Wegenkittl,et al..CPR - curved planar reformation[C].IEEE,2002:37-44.
  • 10张朝霞,郁道银,李宏霄,陈晓冬,贾忠伟,浦奎,王星.基于LVE和ARG算法的冠状动脉分割[J].光电子.激光,2010,21(12):1894-1898. 被引量:3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部