期刊文献+

碳纳米管聚团弹性体的结构调变

Structure Control of Agglomerate of Carbon Nanotube Elastomer
下载PDF
导出
摘要 为得到更加密实的碳纳米管聚团弹性体,使之成作为一种能量吸收材料,在化学气相沉积制备碳纳米管过程中,提出通水提高Co~Mo—Al2O3催化剂裂解乙烯的活性,以便在短时间内促进碳纳米管快速生长的方法,可将碳纳米管聚团密度由40-65kg/m^3提高至120~140kg/m^3。结果表明,所得碳纳米管聚团结构具有明显的二级聚团孔结构分布特征,二级聚团压缩响应特征,并具有明显的高密度压缩体的优点,能够在较小的体积吸收更多能量。 To obtained carbon nanotubes agglomerate with high density, potentially used as energy-adsorbing materials, the method of adding water in the conventional chemical vapor deposition process was proposed. The effect of water was to increase the activity of the Co-Mo-Al2O3 catalyst for decomposing ethylene and to increase the amount of carbon nanotubes drastically in short time. By this way, the density of carbon nanotubes agglomerate increased from 40-65 kg/m^3 to 120-140 kg/m^3. The results showed that the as-obtained carbon nanotubes agglomerates had obvious multi-scale pore size distribution and the secondary stage compression behaviors, which had advantages to become more compact structure to absorb large amounts of energy in volumetric view.
机构地区 清华大学化工系
出处 《中国粉体技术》 CAS 北大核心 2011年第6期1-4,共4页 China Powder Science and Technology
基金 国家重点基础研究发展计划(973计划)项目 编号:2011CB932602 国家自然科学基金重点项目 编号:20736007
关键词 碳纳米管 聚团 结构调变 carbon nanotubes agglomerate structure control
  • 相关文献

参考文献12

  • 1CAO A Y, DICKRELL P L, SAWYER W G, et al. Super-compressible foam like carbon nanotube films[J]. Science, 2005, 310 (5752): 1307-1310.
  • 2LIU Y, QIAN W Z, ZHANG Q, et al. Hierarchical agglomerates of carbon nanotubes as high-pressure cushions[J]. Nano Letters, 2008, 8 (5) : 1323-1327.
  • 3ZHANG Q, ZHAO M Q, LIU Y, et al. Energy-absorbing hybrid composites based on alternate carbon-nanotube and inorganic layers [J]. Advanced Materials, 2009, 21 (28) : 2876-2880.
  • 4HILL F A, HAVEL T F, HART A J, et al. Storing elastic energy in carbon nanotubes [J]. Journal of Micromechanics and Microengineering, 2009, 19(9): 094015-094020.
  • 5XU M, FUTABA D N, YAMADA T, et al. Carbon nanotubes with temperature-invariant viscoelasticity from-196 degrees to 1 000 degrees C[J]. Science, 2010, 330(6009) : 1364-1368.
  • 6LIU Y, GAO X D, QIAN W Z, et al. Architectural and mechanical performances of carbon nanotube agglomerates characterized by compaction response[J]. Powder Technology, 2011,210(4) : 46-50.
  • 7QIAN W Z, WEI F, WANG Z W, et al. Production of carbon nanotubes in a packed bed and a fluidized bed [J]. AIChE Journal, 2003, 49(3) : 619-625.
  • 8HAO Y, ZHANG Q F, WEI F, et al, Agglomerated CNTs synthesized in a fluidized bed reactor: agglomerate structure and formation mechanism[J]. Carbon, 2003, 41 (14): 2855-2863.
  • 9LI Y D, LID X, WANG G W. Methane decomposition to COx-free hydrogen and nano-carbon material on group 8-10 base metal catalysts: a review[J]. Catalysis Today, 2011, 162 ( 1 ) : 1-48.
  • 10孙晓刚,曾效舒.化学气相沉积法制备多壁碳纳米管研究[J].中国粉体技术,2002,8(5):34-36. 被引量:7

二级参考文献7

  • 1Sumio Iijima.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
  • 2Ebbesen T W,Aiayan P M.Large-scale synthesis of carbon nanotubes[J].Nature,1992,358:220-222.
  • 3Joumet C,Maser W K,Bernier P,et al.Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J].Nature,1997,388:756-758.
  • 4Fonseca A,Hernadi K,Piedlgrosso P,et al.Synthesis of single-and multi-wall carbon nanotube over supported catalyst[J].Appl Phys A,1998,67:11-22.
  • 5Pavel Nikoieov,Michael J Bronikowski,kelloy bradley R,et al.Gas-phase catalytic growth of single-wall carbon nanotubes from carbon monoxide[J].Chemical Physics Lett,1999,313:91-97.
  • 6Michael J Bronikowski,Peter A Willis,Daniel T Colbert,et al.Gas-phase production of carbon single-walled nanotubes from carbon monoxide via Hipco process:a parametric study[J].J Vac Sci Technol,2001,A19(4):1800-1805.
  • 7Sumio Iijima,Tchihashi T.Single-shell carbon nanotubes of 1-nm diameter[J].Nature,1993,363:603-605

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部