期刊文献+

非线性梁压电分阶最优减振控制

Piezoelectric Graded Optimal Control for Vibration Reduction of Non-linear Beam
下载PDF
导出
摘要 提出非线性的分阶最优控制方法,并将其应用于梁的非线性振动压电减振控制。建立梁压电减振系统动力学模型,导出减振系统的非线性动力学运动微分方程,利用摄动法,实现非线性微分方程的线性化。将各阶线性方程解耦,化为状态空间方程。设计非线性分阶控制器,对减振系统进行分阶最优控制。仿真算例验证这种控制方法的有效性。 A non-linear graded optimal control scheme is proposed and used in the piezoelectric vibration reduction control of non-linear beams. The dynamic model of a non-linear vibration reduction beam with piezoelectric damper is built. The non-linear dynamic differential equations of the vibration reduction system are deduced. The differential equation is linearized into a set of linear equations by means of perturbation. The state space equations are obtained by decoupling in the space coordinates. The vibration reduction system is controlled by the non-linear graded controllers.
出处 《噪声与振动控制》 CSCD 北大核心 2011年第6期38-42,共5页 Noise and Vibration Control
基金 山东省自然基金项目资助(基金号:Y2007A33)
关键词 振动与波 减振 最优控制 压电 非线性控制 vibration and wave vibration reduction optimal control piezoelectric beam non-linear control
  • 相关文献

参考文献8

  • 1赵永辉,胡海岩.一类非线性系统的滑模振动主动控制[J].南京航空航天大学学报,2003,35(3):308-312. 被引量:2
  • 2李芦钰,欧进萍.结构非线性振动的自适应模糊滑模控制[J].振动工程学报,2006,19(3):319-325. 被引量:8
  • 3卢殿臣,颜敏娟,田立新,张正娣.非线性简支梁振动的H_∞控制[J].江苏大学学报(自然科学版),2004,25(5):405-408. 被引量:2
  • 4Fung R.F, Liu Y.T, Wang C.C. Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass [J]. Journal of Sound and Vibration, 2005, 288:957-980.
  • 5Gao J X, Shen Y E Active control of geometrically nonlinear transient vibration of composite plates with piezoelectric actuators [J]. Journal of Sound and Vibration, 2003, 264:911-928.
  • 6Zhou Youhe,Wang Jizeng. Vibration control of piezoelectric beam-type plates with geometrically nonlinear deformation[J]. International Journal of Non-Linear Mechanics, 2004, 39: 909-920.
  • 7石荣,陈伟民,朱永,封君,唐军,古渊,黄尚廉.柔性梁振动主动控制的压电控制技术研究[J].压电与声光,2000,22(2):83-85. 被引量:4
  • 8G.Visweswara Rao. Linear dynamics of an elastic beam under moving loads[J]. Journal of Vibration and Acoustics, 2000,122:281-289.

二级参考文献24

  • 1高为炳.变结构控制的理论及设计方法[M].北京科学出版社,1998..
  • 2王丰尧.滑模变结构控制[M].北京:机械工业出版社,1998..
  • 3琼荟.变结构控制系统[M].重庆:重庆大学出版社,1997.2-13.
  • 4Balas M J. Trends in large space structure control theory:fondest hopes, wildest dreams [J]. IEEE Transactions on Automatic Control, 1982,27 (6): 522 - 535.
  • 5Kugi A, Schlacher K, Irschik H. Infinite-dimensional control of nonlinear beam vibrations by piezoelectric actuator and sensor layers [J]. Nonlinear Dynamics,1999,19(1) :71 -91
  • 6Marsden J E, Hughes T J R. Mathematical Foundations of Elasticity[M]. Dover: New York, 1994.
  • 7Basar T, Berhard P. H∞ Opitmal Control and Related Minimax Design Problems [M]. Boston: Birhauser,1991.
  • 8Han H C. A new method for variable structure control system design: a linear matrix inequality approach [J]. Automatica, 1997, 33(11).2089-2092.
  • 9Yueming Z,Sahjendra N S. Output feedback variable structure adaptive control of an aeroelastic system[R], AIAA Paper. 1998, 522-531.
  • 10Lewis A S, Sliding control of a flexible rotor via magnetic bearings: theory and experiments [D].PA: The Pennsylvania State University, 1994.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部