期刊文献+

基于分段常值水平集的抛物型方程的参数识别算法

A New Algorithm Scheme for Parameter Identification Based on Piecewise Constant Level Set Method
下载PDF
导出
摘要 研究了线性抛物型方程不连续参数的识别算法.根据原有算法对于加噪观测数据计算不收敛的问题,本文基于分段常值水平集方法,根据水平集函数和优化过程的特点,修正原有Uzawa型算法中的带有总变差(TV)正则化的极小化模型和对常值向量的极小化模型,并且利用分裂Bregman迭代算法处理TV范数的优越性,构造一种新的参数识别算法格式.数值实验结果显示,新算法具有计算时间短、精度高、抗噪性强的优点. A piecewise constant level set method was applied to parabolic inverse problem with discontinuous parameter. According to the feature of level set function and optimization process, combined with split Bregman method which has the advantage of handing the total variation norm, the existing minimization functions in Uzawa algorithm and original algorithm scheme was modified. And then a new algorithm scheme was given. Numerical experiments show that the new algorithm has advantages of short computing time, high precision and strong performance of anti - noise.
出处 《数学理论与应用》 2011年第4期14-19,共6页 Mathematical Theory and Applications
基金 国家自然科学基金(60971132 40874044) 中央高校基本科研业务费专项资金(09CX04004A) 中国石油大学研究生创新基金(CXYB11-16)
关键词 参数识别 增广Lagrange方法 分段常值水平集 分裂Bregman迭代 Parameter identification Augmented Lagrangian methods PCLSM Split Bregman method
  • 相关文献

参考文献5

  • 1T. K. Nilssen, X. C. Tai. Parameter Estimation with the Augmented Lagrangian Method for a Parabolic Equa- tion[ J ]. Journal of Optimization Theory and Applications, 2005, 124 (2) : 435 -453.
  • 2Johan Lie, Marius Lysaker, Xue - Cheng Tai. A Variant of the Level Set Method and Applications to Image Seg- mentation [ J ]. Mathematics of Computation, 2006, 75 (255) : 1155 - 1174.
  • 3Xue - Cheng Tai, Hongwei Li. A Piecewise Constant Level Set Method for Elliptic Inverse Problems [ J ]. Ap- plied Numerical Mathematics, 2007, 57 : 686,696.
  • 4K. van den Doel, U. M. Ascher. On Level Set Regularization for Highly Ill - posed Distribution Parameter Esti- mation Problems [ J ]. Journal of Computational Physics, 2006, 216:707 - 723.
  • 5Hongwei Li Center for Integrated Petroleum Research,University of Bergen,Norway,Department of Mathematics,Capital Normal University,Beijing 100037,China Xuecheng Tai Department of Mathematics,University of Bergen,Norway,Division of Mathematical Sciences,School of Physical and Mathematical Sciences,Nanyang Technological University,Singapore Sigurd Ivar Aanonsen Center for Integrated Petroleum Research,University of Bergen,Norway,Department of Mathematics,University of Bergen,Norway.RESERVOIR DESCRIPTION BY USING A PIECEWISE CONSTANT LEVEL SET METHOD[J].Journal of Computational Mathematics,2008,26(3):365-377. 被引量:3

二级参考文献26

  • 1T. Chan and X.C. Tai, Identification of discontinuous coefficients from elliptic problems using total variation regularization, SIAM J. Sci. Comput., 25 (2003), 881-904.
  • 2S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: Algrithms based on hamilton-jacobi formulations, J. Comput. Phys., 79 (1988), 12-49.
  • 3M. Burger, A level set method for inverse problems, Inverse probl., 17 (2001), 1327-1355.
  • 4K. Ito, K. Kunisch and Z. Li, Level-set function approach to an inverse interface problem, Inverse probl., 17 (20011, 1225-1242.
  • 5U. Ascher and E. Haber, Computational methods for large distributed parameter estimation problems with possible discontinuities, Symp. Inverse Problems, Design and Optimization, (2004).
  • 6R. Villegas, O. Dorn, M. Kindelan and M. Moscoso, Imaging low sensitivity regions in petroleum reservoirs using topological perturbations and level sets, Journal of Inverse and Ill-posed Problems, 15:2 (2007), 199-223.
  • 7R. Villegas, O. Dorn, M. Moscoso, M. Kindelan and F. Mustieles, Simultaneous characterization of geological shapes and permeability distributions in reservoirs using the level set method, paper spe 100291, Proc. SPE Europec/EAGE Annual Conference and Exhibition, pages 1-12, Vienna, Austria, June 12-15, 2006.
  • 8J. Lie, M. Lysaker and X.C. Tai, A variant of the level set method and applications to image segmentation, Math. Comput., 75:255 (2006), 1155-1174 (electronic).
  • 9J. Lie, M. Lysaker and X.C. Tai, A binary level set model and some applications to mumford-shah image segmentation, IEEE T. Image Process., 15:5 (2006), 1171-1181.
  • 10B. Song and T. Chan, A fast algorithm for level set based optimization, Technical report, Camreport-02-68, UCLA, Applied Mathematics, 2002.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部