期刊文献+

盐藻LHCB3蛋白的表达纯化及抗体制备

Expression, Purification and Antibody Preparation of LHCB3 Protein in Dunaliella salina
原文传递
导出
摘要 为了解盐生杜氏藻(Dunaliella salina)主要光捕获蛋白LHCB蛋白的功能,将已获得的盐藻Lhcb3基因构建到原核表达载体pET32a-DsLhcb3,通过优化表达条件,建立了高效的重组系统.pET32a-DsLhcb3在大肠杆菌中的优化表达条件为1 mmol/L IPTG在37℃下诱导4 h.采用镍离子亲合层析纯化获得LHCB3蛋白,并以此为抗原制备了多克隆抗体,经琼脂糖扩散检测效价,在1:16处有明显沉淀.提取盐藻总蛋白,经过制备的LHCB3抗体杂交,在29 000处获得两条明显的杂交条带,为进一步研究盐藻LHCⅡ蛋白表达机理奠定了基础. Light harvesting chlorophyll a/b-binding protein (LHCB) is the major component of antenna complex of photosystem Ⅱ. In order to investigate its functions, Lhcb3 gene in Dunaliella salina was expressed in Escherichia coli and the fusion protein was obtained. The recombinant vector pET32a-DsLhcb3 was transformed into E. coli, and the preparation for expression was optimized in order to construct a more effective recombinant system. This experiment suggested that the optimized expression procedure of pET32a-DsLhcb3 in E. coli was induced by 1 mmol/L IPTG at 37 ℃ for 4 hours. LHCB3 protein was purified by Ni2+ NTA agarose beads, which in turn the polyclonal antibody was achieved. Significant precipitation was detected at 1 : 16 by the agarose diffusion test. The LHCB3 antibody was then hybridized with total protein, and the test showed two hybridization bands at 29 000. This research laid a favorable foundation for further explanations of LHCⅡ mechanisms in D. salina. Fig 4, Ref 16
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2011年第6期847-850,共4页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(No.30871321) 四川省"十一五"科技支撑计划项目(Nos.2008GZ0020 2008GZ0021)资助~~
关键词 盐生杜氏藻 光系统Ⅱ 光捕获蛋白 表达纯化 抗体 Dunaliella salina, photosystem Ⅱ, light harvesting chlorophyll a/b-binding protein, expression and purification, antibody
  • 相关文献

参考文献16

  • 1孙钦秒,冷静,李良璧,匡廷云.高等植物光系统II捕光色素蛋白复合体结构与功能研究的新进展[J].植物学通报,2000,17(4):289-301. 被引量:39
  • 2Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta, 1994, 1184: 1~19.
  • 3Adamska I, Loppstech K. Low temperature increases the abundance of early light-inducible transcript under light stress conditions. J Biol Chem, 1994, 269: 30221~30226.
  • 4Hobe S, F?rster R, Klingler J, Paulsen H. N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry, 1995, 34: 10224~10228.
  • 5Klimmer F, Sj?din A, Noutsos C, Leister D, Jansson S. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol, 2006, 140: 793~804.
  • 6Bassi R, Rigoni F, Giacometti GM. Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem & Photobiol, 1990, 52 (6) : 1187~1206.
  • 7Park S, Polle J, Melis A, Lee TK, Jin ES. Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina. Marine Biotechnology. 2006, 8: 120~128.
  • 8Liu XD, Shen YG. NaCl induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga Dunaliella salina. FEBS Lett, 2004, 569: 337~340.
  • 9Barzda V, Peterman EJ, Grondelle RV, Amerogen HV. The influence of aggregation on the triple formation in light-harvesting chlorophyll a/b pigment-protein complex of green plants. Biochemistry, 1998, 37: 546~551.
  • 10黄秦,曹瑜,吴鹏,史岩,张书,乔代蓉,曹毅.盐生杜氏藻3-磷酸甘油脱氢酶不同结构域蛋白的表达纯化及其抗体的制备与分析[J].应用与环境生物学报,2009,15(2):202-206. 被引量:6

二级参考文献20

  • 1Avron M. The osmotic components of halotolerant algae. Trends Biochem Sci, 1986, 11:5-6
  • 2Ben-Amotz A, Avron M. The role of glycerol in the osmotic regulation of the halophilic alga Dunaliellaparva. Plant Physiol, 1973, 51:875-878
  • 3Gmmler H, Moller E. Salinity-dependent regulation of starch and glycerol metabolism in Dunaliella parva. Plant Cell Environ, 1981, 4: 367-375
  • 4Albertyn J, Hohmann S, Thevelein JM, Prior BA. GPDI, which encodes glycerol-3-phosphate dehydrogenase, is enssential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol, 1994, 14:4135-4144
  • 5Haus M, Wegmann K. Glycerol 3-phosphoate dehydrogenase (EC1.1.1.8) from Dunaliella tertiolecta. Plant Physiol, 1984, 60:283-288
  • 6Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts C J, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M. Volckaert G, Wang CY, Ward TR,Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M. Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418: 387-391
  • 7Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. The two isoenzymes for yeast NAD'-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBOJ, 1997, 16:2179-2187
  • 8Gee RW, Byerrum RU, Gerber DW, Tolbert NE. Differential inhibition and activation of two leaf dihydroxyacetone phosphate reductases: Role of fructose 2,6-bisphosphate. Plant Physiol, 1988, 87:379-383
  • 9Kirsch T, Gerber DW, Byerrum RU, Tolbert NE. Plant dihydroxyacetone phosphate reductases: Purification, characterization, and localization. Plant Physiol, 1992, 100:352-359
  • 10Klock G, Kreuzberg K. Kinetic properties of a sn-glycerol-3-phosphate dehydrogenase purified from the unicellular alga Chlamydomonas reinhardtii. Biochim Biophys Acta, 1989, 991:347-352

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部