期刊文献+

指数多项式模型中参数最大似然估计的收敛速度

Convergence rate for maximum likelihood estimation of parameters in exponential polynomial model
下载PDF
导出
摘要 强度随时间变化的非齐次Possion过程在很多领域应用广泛。对一类非常广泛的非齐次Poisson过程—指数多项式模型,得到了当观测时间趋于无穷大时,参数的最大似然估计的"最优"收敛速度。 The model of nonhomogeneous Poisson processes with varying intensity function is applied in many fields.The best convergence rate for the maximum likelihood estimate(MLE) of exponential polynomial model,which is a kind of wide used nonhomogeneous Poisson processes,is given when time going to infinity.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2011年第5期577-586,共10页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10731010) 教育部博士点基金资助项目(20090001110005)
关键词 非齐次Poisson过程 最大似然估计 收敛速度 重对数律 nonhomogeneous Poisson processes MLE convergence rate law of iterated logrithem
  • 相关文献

参考文献9

  • 1PARHAM P E, MICHAEL E. Modeling the effects of weather and climate change on Malaria transmission [ J ]. Environmental Health Perspectives, 2011, 118(5) : 620 -626.
  • 2REYNOLDS A M. Animals that randomly reorient at cues left by correlated random walkers do the Levy walk[ J]. The American Naturalist, 2010, 175(5) :607 -613.
  • 3COX D R, LEWIS P A W. Statistical analysis of series of events[ M]. Methuen/London: John Wiley and Sons, 1966.
  • 4COX D R. The statistical analysis of dependencies in point process[ M]. New York: John Wiley and Sons Inc, 1972:55 -66.
  • 5MACLEAN C J. Estimation and testing of an exponential polynomial rate function within the non - stationary Poisson process [ J ]. Biometrika, 1974,61:81 - 86.
  • 6LEWIS P A W, SHEDLER G S. Statistical analysis of non - stationary series of events in a data base system[J]. IBM Journal of Research and Development, 1976,20 (5) :465 - 482.
  • 7MIL- HDBK- 189, Reliability Growth Management[ S]. 1981.
  • 8STUDLMOLLER U. A note on the law of iterated logrithem for weighted sums of random variables [ J ]. The Analysis of Probability, 1984,12 ( 1 ) : 35 -44.
  • 9孙万龙.非齐次Poisson过程情形下的最大似然估计.数学进展,1990,:252-253.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部