期刊文献+

挖掘所关注规则的多策略方法研究 被引量:22

Multi-Strategy Approach to Mining Interesting Rules
下载PDF
导出
摘要 通过数据挖掘 ,从大型数据库中发现了大量规则 ,如何选取用户所关注的规则 ,是知识发现的重要研究内容 .该文研究了利用领域知识对规则的主观关注程度进行度量的方法 ,给出了一个能够度量规则的简洁性和新奇性的客观关注程度的计算函数 ,提出了选取用户关注的规则的多策略方法 . A large set of rules can be discovered from large database by using the data mining technologies, but most of them are of no interesting to the user. How to filter the interesting rules is the crucial step within the knowledge discovery in database. The methods to calculate the subjective interestingness and to measure the importance of rules by using of the domain knowledge are studied. A new objective interestingness function, which can measure the novelty and simplicity of rules, is given. A multi strategy approach, which combines with background knowledge, for selecting interesting rules is proposed in the paper. The process of filtering interesting rules includes the several sub processes: deleting the redundant rules; grouping the rules into sub groups; clustering each sub group into classes, and selecting the most interesting rule from each class; finally combining them into the set of interesting rules. Some concepts, such as the importance of attribute, the interestingness of rules, the distance between rules etc, are proposed in the paper. There is an example in the paper, which applying the multi strategy approach, for illustrating the process to select the interesting rules that discovered from CPICDB (chinese parasite infection census database). The example demonstrated the algorithm represented in the paper is practicable and effective.
出处 《计算机学报》 EI CSCD 北大核心 2000年第1期47-51,共5页 Chinese Journal of Computers
基金 国家自然科学基金!( 695 75 0 12 )
关键词 知识发现 数据挖掘 规则 数据库 多策略方法 knowledge discovery, subjective measures interestingness, objective measures interestingness, similarity, domain knowledge
  • 相关文献

参考文献7

  • 11,Agrawal R, Mannila H, Srikant R et al. Fast discovery of association rules. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California: AAAI/MIT Press, 1996. 307-328
  • 22,Brin S, Motwani R, Ullman J D et al. Dynamic itemset counting and implication rules for market basket data. In: Proc the ACM SIGMOD International Conference on Management of Data, Tucson, Arizon, 1997. 255-264
  • 33,Fayyad U M, Piatesky-shapiro G, Smyth P P. From data mining to knowledge discovery: an overview. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. California:AAAI Press, 1996. 1-36
  • 44,Piatesket-Shapiro G. Discovery, analysis, and presentation of strong rules. In: Piatesky-Shapiro G, Frawley W J eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California:AAAI/MIT Press, 1991. 229-238
  • 55,Silberschatz A, Stonebraker M, Ullman J. What makes patterns interesting in knowledge discovery sysstems. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6):970-974
  • 66,Symth P, Goodman R M. An information theoretic approach to rule induction from databases. IEEE Trans on Knowledge and Data Engineering, 1992, 4(4):301-316
  • 77,Toivonen H, Klemettinen M, Ronkainen P et al. Pruning and grouping discovered association rules. In: Mlnet Workshop on Statistics, Machine Learning, and Discovery in Database, Gete, Greece, 1995. 47-52

同被引文献103

  • 1郝雷,王咏,盛焕烨.通过先验知识挖掘更有意义的关联规则[J].计算机仿真,2005,22(3):99-102. 被引量:1
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3刘远超,王晓龙,徐志明,刘秉权.基于粗集理论的中文关键词短语构成规则挖掘[J].电子学报,2007,35(2):371-374. 被引量:17
  • 4徐晋晖 等.一个具有个性的Agent实现机制[J].计算机发展与研究,2000,38(6).
  • 5[1]Menlo Park.Advances in Knowledge Discovery and Data Mining[M].California:AAAI/MIT Press,1991.
  • 6[2]Tuan-Fang Fan,Wu-Chih Hu,Churn-Jung Liau.Decision logical for knowledge representation in data mining[J].IEEE,2001.626-631.
  • 7[4]Zdzislaw Pawlak.Rough sets,decision algorithms and Bayes'theorem[J].Computing,Artificial Intelligence and Information Technology,2002,136:181-189.
  • 8[5]Zdzislaw Pawlak.Rough sets.Int[J].Computer and Information Science,1982,11:341-356.
  • 9[6]Shusaku Tsumoto.Extraction of experts' decision rules from clinical databases using rough set model[J].Intelligent Data Analysis,1998,2:215-227.
  • 10[7]Zdzislaw Pawlak.Rough sets and intelligent data analysis[J].Information Sciences,2002,147:1-12.

引证文献22

二级引证文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部