期刊文献+

等离子体双极Euler-Maxwell方程组的松弛极限 被引量:1

The Relaxation Limit of Bipolar Euler-Maxwell Equations Arising from Plasma
下载PDF
导出
摘要 研究等离子体双极Euler-Maxwell方程组的零松弛时间极限.对于好的初值,借助Maxwell迭代和能量方法,证明了当松弛时间趋向于零时,双极Euler-Maxwell方程组周期初值问题的解到漂流扩散方程组周期初值问题解的收敛性. This work is concerned with multi-dimensional bipolar Euler-Maxwell equations for plasmas with short momentum :relaxation time. With the help of the Maxwell iteration, the convergence for the smooth solutions to the bipolar Euler-Maxwell equations towards the solutions to the smooth solutions to the bipolar drift-diffusion equations is proved, as the relaxation time tends to zero. Meanwhile, the formal derivation of the latter from the former is Justified.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第6期1543-1549,共7页 Acta Mathematica Scientia
基金 国家自然科学基金(11071009)资助
关键词 Euler—Maxwell方程组 松弛极限 漂流扩散方程组. Euler-Maxwell equations Relaxation limit Drift-diffusion equations.
  • 相关文献

参考文献2

二级参考文献19

  • 1JuQiangchang LiYong.GLOBAL EXISTENCE AND EXPONENTIAL STABILITY OF SMOOTH SOLUTIONS TO A MULTIDIMENSIONAL NONISENTROPIC EULER-POISSON EQUATIONS[J].Acta Mathematica Scientia,2004,24(3):434-442. 被引量:2
  • 2Stein, E., Singular Integrals and Differentiability, Princeton, Princeton Univ. Press. New .Jersey, 1970.
  • 3Wang, S., Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. Partial Differential Equations, 29, 2004, 419-456.
  • 4Wang, S. and Jiang, S., The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 31, 2006, 571-591.
  • 5Besse. C., Claudel, J., Degond. P. et al, A model hierarchy for ionospheric plasma modeling, Math. Models Methods Appl. Sci., 14, 2004, 393-415.
  • 6Brenier, Y., Convergence of tile Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25, 2000, 737-754.
  • 7Brezis, H., Golse F. and Sentis R., Analyse asymptotique de l'equation de Poisson couplde a la relation de Boltzmann, Quasi-neutralite des plasmas, C. R. Acad. Sci. Paris. 321, 1995, 953-959.
  • 8Chen. F., Introduction to Plasma Physics and Controlled Fusion. Vol. 1, Plenum Press, New York, 1984.
  • 9Chen, G. Q., Jerome, J. W. and Wang, D. H., Compressible Euler-Maxwell equations, Transport Theory and Statistical Physics, 29, 2000, 311-331.
  • 10Cordier. S. and Grenier, E., Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25, 2000, 1099-1113.

共引文献8

同被引文献9

  • 1杨建伟,王术,石启宏.等离子体双极Euler-Maxwell方程的非相对论极限[J].应用数学,2010,23(1):179-184. 被引量:2
  • 2CHEN Gui-qiang, JEROME J W, WANG De-huaCompressible Euler-Maxwe11 equations [ J ]. Transport Theory and Statistical Physics, 2000, 29 ( 3/4/5 ) : 311- 331.
  • 3PENG Yue-jun, WANG Shu, GU Qi-long. Relaxation limit and global existence of smooth solutions of compressible Euler-Maxwell equations [ J]. SIAM J Math Anal, 2011, 43(2) : 944-970.
  • 4UEDA Y, WANG Shu, KAWASHIMA S. Dissipative structure of the regularity-loss type and time asymptotic decay of solutions for the Euler-Maxwell system [ J ]. SIAM J Math Anal, 2012, 44 (3) : 2002-2017.
  • 5DUAN Ren-jun. Global smooth flows for the compressible Euler-Maxwell system: relaxation case [ J ]. Journal of Hyperbolic Differential Equations, 2011, 8 ( 2 ) : 375-413.
  • 6PENG Yue-jun, WANG Shu. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters[J]. Discrete Contin Dyn Syst, 2009, 23 ( 1/ 2) : 415-433.
  • 7HANOUZET B, NATALINI R. Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy [ J]. Arch Rational Mech Anal, 2003, 169 (2) : 89-117.
  • 8KAWASHIMA S, YONG Wen-an. Dissipative structure and entropy for hyperbolic systems of balance laws [ J]. Arch Rational Mech Anal, 2004, 174(3) : 345-364.
  • 9YONG Wen-an. Entropy and global existence for hyperbolic balance laws [J]. Arch Rational Meeh Anal, 2004, 172(2) : 247-266.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部