期刊文献+

基于配体结构的Grb2-SH2抑制剂的结构优化:更高的活性、更少的电荷、更低的肽性

Ligand-Based Structural Optimization of Grb2-SH2 Inhibitors:High Affinity,Low Charge and Reduced Peptidic Nature
原文传递
导出
摘要 生长因子受体结合蛋白2(Grb2)在致癌基因Ras活化的信号传导通路中起着关键作用,目前被广泛认为是抗肿瘤药物设计的优秀靶标.对Grb2-SH2抑制剂的研究进展进行了综述,主要针对关键残基磷酸酪氨酸的高电荷性和多肽结构的低生物相容性两个缺陷,基于天然配体与Grb2-SH2相互作用的结构特征,围绕提高活性和简化结构开展的系统构效关系和合理结构优化研究,为进一步开发磷酸酪氨酸介导的Grb2-SH2抑制剂成为新型抗肿瘤药物提供结构和理论基础. The growth factor receptor bound protein 2 (Grb2) is an intracellular adaptor protein. By its SH2 domain binding to the specific pTyr containing motif on the activated EGFR, Grb2 triggers the downstream activation of mitogenic Ras pathways which have been implicated in the etiology of certain breast cancers. So Grb2-SH2 has been recognized as an excellent target for the antitumor drug design. In this article, the recent progress of Grb2-SH2 inhibitors is reviewed, focused on the strategy to overcome the problems of the high charge and the low bioavailability endowed by the essential phosphotyrosine and the peptidic nature, respectively. The systematic structure-activity relationship study and the rational structural optimization were achieved based on the ligand-protein interaction to improve the potency and simplify the molecular structure, providing useful information for the future development of phosphotyrosine-mediated SH2 sig- naling inhibitors into antitumor agents.
出处 《有机化学》 SCIE CAS CSCD 北大核心 2011年第12期2019-2033,共15页 Chinese Journal of Organic Chemistry
基金 国家自然科学基金(No.81021062)资助项目
关键词 磷酸酪氨酸 Grb2-SH2抑制剂 构效关系 信号传导 抗肿瘤 phosphotyrosine Grb2-SH2 inhibitor structure-activity relationship mitogenic ras pathway anti-tumor drug
  • 相关文献

参考文献58

  • 1Lowenstein, E. J.; Daly, R. J.; Batzer, A. G.; Li, W.; Margolis, B.; Lammers, R.; Ulirich, A.; Skolnik, E. Y.; Bar-Sagi, D.; Schlessinger, J. Cell 1992, 70, 431.
  • 2Sawyer, T. K. Biopolymers 1998, 47, 243.
  • 3Song, Y.-Z.; Shoelson, S. E.; McGlade, J., Oliver, P.; Pawson, T.; Bustelo, X. R.; Barbacid, M.; Sabe, H.; Sabe, H.; Hanafusa, H.; Yi, T.; Ren, R.; Baltimore, D.; Ratnovsky, S.; Feldman, R. A.; Cantley, L. C. Mol. Cell. Biol. 1994, 14, 2777.
  • 4Song, Y.-Z.; Shoelson, S. E.; Chaudhuri, M.; W. G.; King, F.; Roberts, T.; Ratnovsk, S.; Levhleider, R. J.; Neel, B. G.; Birge, R. B.; Fajardo, J. E.; Chou, M. M.; Hanafusa, H.; Hanafusa, H.; Schaffhausen, B.; Schaffhausen, B.; Cantley, L. C. Cell 1993, 72, 767.
  • 5Alessio, G.; Burker, T. R. Jr,; Bottaro, D. P. Expert Opin. Ther. Targets 2008, 12, 1021.
  • 6Dharmawardana, P. G.; Peruzzi, B.; Giubellino, A.; Burke, T. R.; Bottaro, D. P. Anti-CancerDrugs 2006, 17, 13.
  • 7Kessels, H. W. H. G.; Ward, A. C.; Schumacher, T. N. M. Proc. Natl. Acad. Sci. U. S. A. 2002, 25, 8524..
  • 8Maignan, S.; Guilloteau, J. P.; Fromage, N.; Amoux, B.; Becquart, J.; Ducruix, A. Science 1995, 268, 291.
  • 9Rahuel, J.; Gay, B.; Erdmann, D.; Strauss, A.; Garcia-Echeverria, C.; Furet, P.; Caravatti, G.; Fretz, H.; Schoepfer, J.; Gruetter, M. G. Nat. Struct. Biol. 1996, 3, 586.
  • 10Burke, T. R. Jr. Int. J. Pept. Res. Ther. 2006, 12, 33.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部