期刊文献+

MoO3为缓冲层的高效非掺杂蓝色有机发光二极管 被引量:4

Highly Efficient Nondoped Blue Organic Light-emitting Diode Using MoO_3 as Anode Buffer Layer
下载PDF
导出
摘要 以典型蓝色发光材料-联苯乙烯衍生物(4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl,DPVBi)为发光层,采用MoO3为阳极缓冲层制备了结构简单的非掺杂型蓝色有机电致发光器件。在电流密度为20 mA/cm2、MoO3缓冲层厚度为0.5 nm对器件效率约为无缓冲层器件效率的18倍,为通常酞菁铜(Copper phthalocya-nine,CuPc)缓冲层器件效率的1.2倍。器件启亮电压为3.3 V,最高外量子效率为3.1%,最高亮度达到16 000 cd/m2,器件CIE色坐标(Commission Internationale de l'Eclairage co-ordinates)为(0.15,0.15)。器件性能的提升归因于MoO3缓冲层的插入在阳极/有机层间形成了良好的欧姆接触。 Contact properties between electrodes and organic layers play a key role for the performance of an organic device.Ohmic contacts at electrode/organic interfaces are required for an ideal device.In order to improve performance of 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl(DPVBi,a typical blue organic luminescent material) based organic light-emitting diode,MoO3 was introduced at anode interface as a buffer layer and a highly efficient bright nondoped blue electroluminescent device with low driving voltage was fabricated.Luminescent efficiency of the device with a 0.5-nm-thick MoO3 buffer layer is 18 times higher than that of the device without buffer layer,and 1.2 times higher than that of the device with a conventional copper phthalocyanine(CuPc) buffer layer at a current density of 20 mA/cm2.Turn-on voltage,maximum external quantum efficiency and luminance of the device are 3.3 V,3.1% and 16 000 cd/m2,respectively.Commission Internationale de l'Eclairage(CIE) co-ordinates are(0.15,0.15).Realization of excellent device performance is attributed to formation of ohmic contact between anode and organics by insertion of MoO3.
出处 《发光学报》 EI CAS CSCD 北大核心 2011年第12期1271-1275,共5页 Chinese Journal of Luminescence
基金 甘肃省自然科学基金(1010RJZA035) 教育部留学回国人员科研启动基金(第40批) 国家自然科学基金(11164015,11164016)资助项目
关键词 有机电致发光 蓝色 阳极缓冲层 MOO3 luminescence organic electroluminescence blue anode buffer layer MoO3
  • 相关文献

参考文献3

二级参考文献43

  • 1Tang C W, Vanslyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51 (12):913-915.
  • 2Zheng X Y, Zhu W Q, Wu Y Z, et al. A white OLED based on DPVBi blue light emitting host and DCJTB red dopant[J]. Displays, 2003, 24 (3):121-124.
  • 3Jiang Xueyin, Zhang Zhilin, Cao Jin, et al. White OLED with high stability and low driving voltage based on a novel buffer layer MoOx[J]. J. Phys. D: Appl. Phys., 2007, 40 (18):5553-5557.
  • 4Gong X, Ostrowski J C, Heeger A J, et al. Red electrophosphorescence from polymer doped with iridium complex[J]. Appl. Phys. Lett., 2002, 81 (20):3711-3713.
  • 5Kanno H, Ishikawa K, Nishio Y, et al. Highly efficient and stable red phosphorescent organic light-emitting device using bis zinc (Ⅱ) as host material[J]. Appl. Phys. Lett., 2007, 90 (12):123509-1-3.
  • 6Ikai M, Tokito S, Sakamoto Y. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer[J]. Appl. Phys. Lett., 2001, 79 (2):156-158.
  • 7Adachi C, Baldo M A, Forrest S R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J. Appl. Phys., 2001, 90 (10):5048-5051.
  • 8Watanabe S, Ide N, Kido J. High-efficiency green phosphorescent organic light-emitting devices with chemically doped layers[J]. Jpn. J. Appl. Phys., 2007, 46 (3A):1186-1188.
  • 9Adachi C, Kwong R C, Djurovich P, et al. Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials[J]. Appl. Phys. Lett., 2001, 79 (13):2082-2084.
  • 10Wong Kentsung, Chen Youming, Lin Yuting, et al. Nonconjugated hybrid of carbazole and fluorene: A novel host material for highly efficient green and red phosphorescent OLEDs[J]. Org. Lett., 2005, 7 (24):5361-5364.

共引文献18

同被引文献21

  • 1BRüTTING W, BERLEB S, MCKL A G.Device physics of organic light-emitting diodes based on molecular materials[J].Organic Electronics, 2001, 2(1):1-36.
  • 2AKSHAY K, KE Y, JAYANT K.Techniques for characterization of charge carrier mobility in organic semiconductors[J].J Polym Sci part B:Polym Phys, 2012, 50(15):1130-1144.
  • 3EGON P, GVIDO B.Time-of-flight mobility of charge carriers in position-dependent electric field between coplanar electrodes[J].Appl Phys Lett, 2012, 101(9):093304-1-3.
  • 4HOSOKAWA C, TOKAILIN H, HIGASHI H, et al.Transient behavior of organic thin film electroluminescence[J].Appl Phys Lett, 1992, 60(10):1220-1222.
  • 5CHU Ta-Ya, SONG Ok-Keun.Hole mobility of N, N’-bis(naphthalen-1-yl)-N, N’-bis(phenyl) benzidine investigated by using space-charge-limited currents[J].Appl Phys Lett, 2007, 90(20):203512-1-3.
  • 6GAO J, XU J B, ZHU M, et al.Thickness dependence of mobility in CuPc thin film on amorphous SiO2 substrate[J].J Phys D:Appl Phys, 2007, 40(18):5666-5669.
  • 7WU Youzhi, ZHANG Cairong, ZHANG Dingjun.Determination of carrier mobility in disordered organics from current-voltage characteristics[J].Appl Phys Lett, 2009, 95(3):033508-1-3.
  • 8MATSUSHIMA T, KINOSHITA Y, MURATA H.Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers[J].Appl Phys Lett, 2007, 91(25):253504-253506.
  • 9陈振宇,叶腾凌,马东阁.有机半导体中载流子迁移率的测量方法[J].化学进展,2009,21(5):940-947. 被引量:4
  • 10赵云龙,段炼,乔娟,张德强,王立铎,邱勇.基于双极性小分子的单层非掺杂红色荧光有机发光二极管(英文)[J].物理化学学报,2010,26(3):531-534. 被引量:6

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部