期刊文献+

Banach空间集值映射的度量正则性与变分方程的Lipschitz稳定性(英文)

Metric Regularity of Set-valued Mappings and Lipschitzian Stability of Variational Equation in Banach Spaces
下载PDF
导出
摘要 综述了集值映射的某些概念,例如度量正则性、伪Lipschitz性质(Aubin性质)、度量次正则性和Calm性质和这些概念的相互关系以及某些判据.也给出了他们在变分方程解的鲁棒Lipschitz稳定性、约束优化问题的最优性条件、集合族的线性正则性质和广义方程迭代过程的收敛性. In this paper, we survey some concepts for set-valued mappings, such as metric regularity, pesudo-Lipschitz property (or Aubin property), metric subregularity, and calmness, relationships among these concepts, and some criteria for them. We also present their applications to the robust Lipschitzian stability of solution mappings to variational equations, optimality condition of constrained optimization problems, linear regularity of sets, and convergence of iterative processes for generalized equations.
作者 宋文
出处 《应用泛函分析学报》 CSCD 2011年第4期337-348,共12页 Acta Analysis Functionalis Applicata
基金 partially supported by the National Natural Science Foundation of China(11071052)
关键词 度量正则 伪Lipschitz性质 CALM 变分方程 最优化 metric regularity pesudo-lipschitz property calmness variational equations opti-mization
  • 相关文献

参考文献35

  • 1Ioffe A D. Metric regularity and subdifferntial calculas[J]. Russian Math Surveys, 2000, 55: 501-558.
  • 2Ioffe A D, Outrata J V. On metric and calmness qualification conditions in subdifferential calculus[J]. Set-Valued Anal, 2008, 16: 199-227.
  • 3Aubin J P, Ekeland I. Applied Nonlinear Analysis[M]. New York: Wiley-Interscience, 1984.
  • 4Penot J-P. Metric regularity, openness and Lipschitzian behavior of multifunctions[J]. Nonlinear Anal: Theory, Methods Appl, 1989, 13:629 643.
  • 5Jourani A, Thibault L. Verifiable conditions for openness, metric regularity of multivalued mappings[J]. Trans Amer Math Soc, 1995, 347:1225 1268.
  • 6Mordukhovich B S. Complete characterizations of openness, metric regularity and Lipschitzian properties of multifunctions[J]. Trans Amer Math Soc, 1993, 340: 1-35.
  • 7Dontchev A L, Rockafellar R T. Regularity and conditioning of solution mappings in variational analysis[J]. Set-Valued Analysis, 2004, 12:79 109.
  • 8Borwein J M, Zhu Q J. Techniques of Variational Analysis[M]. CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 20, Springer, New York, 2005.
  • 9Mordukhovich B S, Variational Analysis and Generalized Differentiation I:Basic Theory[M]. Springer, Berlin, 2006.
  • 10Dontchev A L, Rockafellar R T. Implicit Functions and Solution Mappings: A View from Variational Analysis[M]. Springer, 2009.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部