期刊文献+

每个忙期中第一个顾客被拒绝服务的M/M/1排队模型的其他特征值 被引量:1

Other Eigenvalues of M/M/1 Queueing Model with Exceptional Service Time for the First Customer in Each Busy Period
下载PDF
导出
摘要 研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型的主算子在左半复平面中的特征值,证明对一切θ∈(0,1),(2(?)-λ-μ)θ是该主算子的几何重数为1的特征值. We study eigenvalues of the operator corresponding to the M/M/1 queueing model with exceptional service time for the first customer in each busy period in the 'left half complex plane, and prove that for all θ∈(0,1),(2√λμ-λ-μ)θ are eigenvalues of this operator with geometric multiplicity one.
出处 《应用泛函分析学报》 CSCD 2011年第4期383-391,共9页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(10861011)
关键词 每个忙期中第一个顾客被拒绝服务的M/M/1排队模型 特征值 几何重数 the M/M/1 queueing model with exceptional service time for the first customer ineach busy period eigenvalue geometric multiplicity
  • 相关文献

参考文献5

  • 1Takagi H. Time-dependent analysis of M/G/1 vacation models with exhaustive service[J]. Queueing Sys- tems, 1990, 6: 369-390.
  • 2Geni Gupur. Semigroup method for M/G/1 queueing system with exceptional service time for the first customer in each busy period[J]. Indian Journal of Mathematics, 2002, 44(2): 125-146.
  • 3Geni Gupur time for the Applications Geni Gupur, Asympotic property of the solution of M/M/1 queueing system with exceptional service first customer in each busy period[J]. International Journal of Differential Equations and 2003, 8: 23-94.
  • 4LI Xuezhi, ZHU Guangtian. Functional Analysis Method in Queueing Theory[M]. Research Information Ltd., Hertfordshire, 2001.
  • 5张明勤,艾尼.吾甫尔.每个忙期中第一个顾客被拒绝服务的M/M/1排队模型的另一个特征值[J].应用泛函分析学报,2009,11(1):62-68. 被引量:4

二级参考文献4

  • 1Takagi H. Time-dependent analysis of M/G/1 vacation models with exhaustive service [J]. Queueing Systems, 1990,6 : 369-390.
  • 2Geni Gupur. Semigroup method for M/G/1 queueing system with exceptional service time for the first customer in each busy period[J]. Indian Journal of Mathematics,2002,44(2):125-146.
  • 3Geni Gupur. Asymptotic property of the solution of M/M/1 queueing system with exceptional service time for the first customer in each busy period [J]. International Journal of Differential Equations and Applications, 2003,8 : 23-94.
  • 4Geni Gupur, Li Xuezhi, Zhu Guangtian. Functional Analysis Method in Queueing Theory [M]. Hertfordshire, Research Information Ltd, 2001.

共引文献3

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部