期刊文献+

仿生合成中的单核铜蛋白及其含铜金属模拟酶的研究 被引量:1

Progress in the Study of Mononuclear Cupreins and Models for Metalloenzymes in Biomimetic Synthesis
下载PDF
导出
摘要 仿生化学的研究重点之一是对各类天然金属酶的氧化模拟。文章主要综述了近年来国内外对含金属铜的单核蛋白质体蓝素结构、半乳糖氧化酶、含铜的胺氧化酶和铜锌超氧歧化酶等的结构特点和催化功能的研究进展。质体蓝素结构为畸变的四面体,参与光合作用过程中电子传递;半乳糖氧化酶活性中心结构是平面四边形,能将伯醇氧化成相应的醛;铜锌超氧歧化酶具有Cu和Zn双金属中心;而胺氧化酶具有醌式辅基,能将伯胺氧化为醛和NH3。并介绍了对各类单核铜蛋白的结构和催化性能进行仿生模拟的研究概况。 Models for metalloenzymes are important in biomimetic chemistry research. This review summarizes the recent progress in the research of mononuclear copper proteins such as plastocyanins, galactose oxidase, Cu-Zn SOD, copper amine oxidases. Structure of plastocyanins is distorted tetrahedron, which is the sole protein responsible for photosynthetic electron transfer. The active center of galactose oxidase is planar quadrilateral. It can catalyze oxidation of primary alcohol to aldhyde. Cu-Zn SOD has Cu and Zn two metal center. Copper amine oxidases constrains a topo quinone cofacter that oxidate primary amine to aldhyde and NH3. And introduce copper complexes as models for the active site of copper oxidases.
出处 《广州化学》 CAS 2011年第4期59-68,共10页 Guangzhou Chemistry
基金 广东省科技计划项目(20101096) 广东省大学生创新实验项目(1057310015)
关键词 仿生合成 单核铜蛋白 含铜金属模拟酶 biomimetic synthesis mononuclear cupreins models for copper metalloenzymes
  • 相关文献

参考文献28

  • 1Katsuko S, Takamitsu K, Christopher D. Active-site structure and electron-transfer reactivity of plastocyanins[J]. J Am Chem Soc, 2003, 125:2101-2112.
  • 2Edward I S, Robert K S, Serena D G, et al. Electronic structures of metal sites in proteins and models: Contributions to function in blue copper proteins[J]. Chem Rev, 2004, 104: 419-458.
  • 3Yan Z, Vadim N G. Comparative genomics of trace elements: Emerging dynamic view of trace element utilization and function[J]. Chem. Rev, 2009, 109: 4828-4861.
  • 4Mahadevan V, Gebbink R K, Stack T D E Biomimetic modeling of copper oxidase reactivity[J]. Bio-inorganic Chemistry, 2000, 4: 228-234.
  • 5Lewis E A, Tolman W B. Reactivity of dioxygen-copper systems[J]. Chem Rev, 2004, 104: 1047-1076.
  • 6Sergey S, Jan T, Andreas C, et al. Direct electron transfer between copper-containing proteins and electrodes[J]. Biosensors and Bioelectronics, 2005, 20:2517-2554.
  • 7Nicholas J. Turner enantioselective oxidation of C-O and C-N bonds using oxidases[J]. Chem Rev, 2011, 111: 4073-4087.
  • 8Mirko M, Beatriz J, Mario P, et al. The solution structure of the monomeric copper, zinc superoxide dismutase from Salmonella enterica: Structural insights to understand the evolution toward the dimeric structure[J]. Biochemistry, 2008, 47: 12954-12963.
  • 9Ke Q L, Lawrence M S. A dopaquinone model that mimics the water addition step of cofacteror biogenesis in copper amine oxidase[J]. J Am Chem Soc, 2005, 127: 4777-4784.
  • 10Michele L, Maria L D P, Marianna B. Ctystal structure of amine oxidase from bovine serum[J]. J Mol Biol, 2005, 346: 991-1004.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部