期刊文献+

基于增量谐波平衡法的输流管道非线性振动分析(英文) 被引量:1

Nonlinear Model for Vibration Analysis of Fluid-conveying Pipes via the Incremental Harmonic Balance Method
下载PDF
导出
摘要 考虑内、外流体的影响,利用Kane方法和拉格朗日应变理论建立了输流管道的二维非线性动力学模型。将动力学模型在平衡位置附近线性化,进行输流管道的线性稳定性分析。采用增量谐波平衡法求解包含三次非线性项动力学模型的稳态周期解。探讨了不同参数影响下输流管道的非线性动力响应以及内流流速的大小对管道动力特性的影响。 A new nonlinear model of a fluid-conveying pipe is presented. Considering the effect of the internal fluid and excitation, the nonlinear differential equations are derived based on Kane's equation in combination with a Ritz method by using non-linear Lagrange strain theory.The equations of motion are linearized in the neighborhood of the equilibrium position to carry on the muhimode linear stability analysis.In addition, the time histories for the displacements are obtained by using the Incremental Harmonic Balance (IHB) method. The validity of the new model is substantiated by comparing the model and results with those proposed by Paadoussis (1998).
作者 孟丹 陈亮
出处 《船舶力学》 EI 北大核心 2011年第12期1416-1428,共13页 Journal of Ship Mechanics
基金 Supported by National Natural Science Foundation of China (50808105) Shandong Province Natural Science Foundation (BS2009SF003)
关键词 非线性模型 KANE方法 振动分析 增量谐波平衡法 nonlinear model Kane's method vibration analysis Incremental Harmonic Balance (IHB) method
  • 相关文献

参考文献21

  • 1Paidoussis M P. Fluid-structure interactions: Slender structures and axial flow[M]. Academic Press, London, 1998.
  • 2Meng Dan, Guo Haiyan, Xu Sipeng. Nonlinear dynamic model of a fluid-conveying pipe undergoing overall motions[J]. Appl. Math. Model, 2011, 35: 781-796.
  • 3Meng Dan, Guo Haiyan, Xu Sipeng. Flow-induced vibration stability analysis of fluid-conveying pipes[J]. J Vib. and Shock, 2010, 29(6): 86-89. (in Chinese).
  • 4Semler C, Li G X, Paldoussis M P. The non-linear equations of motion of pipes conveying fluid[J]. J Sound Vib., 1994, 169: 577-599.
  • 5Folley C N, Bajaj A K. Spatial nonlinear dynamics near principal parametric resonance for a fluid-conveying cantilever pipe[J]. J Fluid Struct., 2005, 21: 459-484.
  • 6Hindmarsh A C. Scientific Computing, North-Holland[M]. ODEPACK, a systematized collection of ODE solvers, Amsterdam, 1983.
  • 7Hairer E, Norsett S P, Wanner G. Solving ordinary differential equations[M]. Springer-Verlag, Berlin, 1993.
  • 8Nayfeh A H, Mook D T. Nonlinear Oscillations[M]. Wiley-Interscience, New York, 1979.
  • 9Gelb A, Vander Velde W E. Multiple-input describing functions and nonlinear system design[M]. McGraw-Hill, New York, 1968.
  • 10Semler C, Gentleman W C, PaYdoussis M P. Numerical solutions of second order implicit non-linear ordinary differential equations[J]. J Sound Vib., 1996, 2: 553-574.

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部