期刊文献+

超疏水表面微通道内滑移速度的模拟研究

Simulation research on superhydrophobic surface slip velocity
下载PDF
导出
摘要 基于FLUENT软件中的流体体积模型(volume of fluid,VOF),对给定入口速度和出口压力时,矩形、三角形、圆头形三种典型的超疏水微通道物理模型的单侧滑移流动进行了数值计算。在此基础上,分析了不同形状和尺寸情况下,滑移速度随微通道中微肋高度的变化情况,得出了微结构的尺寸及形状对物体表面疏水性的影响规律,优化选择了最佳的微结构尺寸和形状。当微肋高度为40μm时矩形物理模型较其他两模型的滑移速度大,当微肋高度约大于50μm时圆头形物理模较其他两模型的有较大的滑移速度。结论对超疏水表面微结构的设计及其应用具有重要的指导作用。 Given the inlet velocity and the outlet pressure, single boundary glidding hum shap with and erically simulated e physical model the height of the for three typical physical model, i. of superhydrophobic microchannel. microribs in the microchannels were e. the rectangular, triangle and flows were round head Further more, the changes of sliding speed analysed in the condition of different shapes sizes. The hydrophobic influence law on the size and shape of the microstructure on the surface was obtained. And the round head shape physical model was found to have better hydrophobicity. The results may provide some guidelines for the design and its application of the hydrophobic surface.
出处 《热科学与技术》 CAS CSCD 2011年第4期334-338,共5页 Journal of Thermal Science and Technology
关键词 超疏水表面 微通道 滑移速度 数值模拟 superhydrophoic surface microchannel slip velocity numerical simulation
  • 相关文献

参考文献12

  • 1NAKAJIMA A, HASHIMOTO K, WATANABE T. Recent studies on super-hydrophobic films [J]. Monatshe fie Fur Chemic Chem Monthly, 2001, 132 (1) :31-41.
  • 2JIANG L, WANG R, YANNG B, etal. Binary co operative complementary nanoscale interracial mate rials [J]. Pure and Appl Chem, 2000, 72: 73-78.
  • 3NAKAJIMA A, HASHIMOTO K, WATANABE T. Recent studies on uper-hydrophobic films monatsh [J]. Monatsh Chem, 2001, 132:31-41.
  • 4FENG L, JIANG L, ZHU D. et al. Superhydro-phobieily of nanostructured carbon films in a wide range of PH values [J]. Angew Chern Int Ed, 2003, 42 : 4217-4220.
  • 5CHURAEV N, SOBOLEV V, SOMOV A. Slippage of liquids over lyophobic solid surfaces [J]. J Colloid and Interface Sci, 1984, 97(22) :574-581.
  • 6PARANJAPE B V. Friction at the solid interface in a fluid flow [J]. Phys Left :A, 1989, 137(6):285- 286.
  • 7VINOGRADOVA O I. Slippage of water over hydrophobic surfaces [J]. Int J Miner Process, 1999,56 : 31-60.
  • 8LAUGA E, STONE H A. Effective slip in pressure driven Stokes flow [J]. J Fluid Mech, 2003, 489: 55-77.
  • 9KHAN M, HAYAT T, AYUB M. Numerical study of partial slip on the MHD flow of an oldroyd 8-constant fluid [J]. Comput and Math with Appl , 2007, 53(7) :1088-1097.
  • 10VORONOV R S, PAPAVASSIL1OU D V, LEE L L. Slip length and contact angle over hydrophobic surfaces [J]. Chem Phys Lett, 2007, 441 (4-6):273-276.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部