期刊文献+

提升小波包和神经网络在轴承故障诊断中的应用 被引量:1

Application of Lifting Wavepack Transform and Neural Networks to Fault Diagnosis of Bearing
下载PDF
导出
摘要 针对轴承故障信号的特点,采用9/7提升小波包和概率神经网络(Probabilistic Neural Networks)相结合的算法对轴承故障进行诊断。首先对原始数据进行小波变换,并对其进行特征提取。然后利用概率神经网络对得到的特征向量进行类别判定。在VB和Matlab设计的故障诊断仿真实验平台上,验证了9/7提升小波包和概率神经网络混合的故障诊断方法满足实验要求. According to the features of the vibration signals that come from the bearings, 9/7 lifting wavepack transform and Probabilistic Neural Networks (PNN) were used to analyse the fault data. Firstly, wavelet transform on the original data is performed and its feature vector is calculated. Secondly, the PNN is used to classify the vector. The fault diagnosis method of the 9/7 lifting wavepack and PNN is proved to meet the requirements by the VB and Mat- lab platform.
出处 《沈阳理工大学学报》 CAS 2011年第5期38-41,共4页 Journal of Shenyang Ligong University
关键词 故障诊断 9/7提升小包波分析 概率神经网络 轴承 VB fault diagnosis 9/7 lifting wavepack analysis probabilistic neural networks bearing VB
  • 相关文献

参考文献9

二级参考文献36

共引文献89

同被引文献19

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部