期刊文献+

基于系统辨识的电台类型分类实验研究

Experimental Investigation of Radio-Types Classification Based on System Identification Technique
下载PDF
导出
摘要 提出了电台类型识别的必要性和研究思路。在深入分析数字调制系统的基础上,关注系统的线性特性,尝试以系统辨识的方法建立调制系统的黑盒模型,并提出将所得模型频率响应的差异作为区分电台类型的依据。最后对三种型号的电台在相似环境下用同一接收机进行了实验,结果表明辨识所得系统的幅频和相频曲线确实存在较明显的差异,可以将其作为特征对电台类型进行有效分类。 The necessity and methodology of Radio-Type Recognition is proposed in this paper. With an analysis of the digital modulation system, the linear characteristic of the system is concerned and subsequently a black-box model of the system is built by using system identification technique. The difference among the frequency responses of the estimated models is used to classify different radio types. Finally, an experiment is carried out on three-type radios in similar circumstances with a certain receiver. Results show the dissimilarity of the curves. And the raido-types can be classified effectively by using the frequency response as a feature.
出处 《通信对抗》 2011年第4期8-11,共4页 Communication Countermeasures
关键词 线性特性 系统辨识 频率响应 电台类型分选 linear characteristic system identification frequency response radio-types classification
  • 相关文献

参考文献7

  • 1蔡忠伟,李建东.基于双谱的通信辐射源个体识别[J].通信学报,2007,28(2):75-79. 被引量:84
  • 2Hippenstiel R D.Wavelet Based Approach to Transmitter Idnetification[]..1995
  • 3Wisell D,berg T.Analysis and Identification of Trans-mitter Non-linearities. http://www.signal.uu.se/Publications/pdf/c0014.pdf .
  • 4.System Identification Toolbox[]..1996
  • 5TOONSTR J,KINSNER. W.A radio transmitter fingerinting system ODO-1[].Electrical and Computer Engineering Canadian Conference.1996
  • 6Sillas Hadjiloucas,Roberto K.H.Galvao,Victor M.Becerra etal.Comparison of Subspace and ARX Models of a Waveguide’s Terahertz Transient Response After Optimal Wavelet Filtering[].IEEE Tansactions on microwave theory and techniques.2004
  • 7Worden,K.,Tomlinson,G. R. Nonlinearity in Structural Dynamics: Detection, Identification, and Modeling . 2001

二级参考文献9

  • 1TOONSTR J,KINSNER W. A radio transmitter fingerprinting system ODO-1[A]. Electrical and Computer Engineering, Canadian Conference[C]. 1996.60-63
  • 2SHAW D, KINSNER W. Multifractal modelling of radio transmitter transients for classification[A]. WESCANEX 97: Communications,Power and Computing, Conference Proceedings, IEEE[C]. 1997.306-312
  • 3TEKBAS O H, URETEN O, SERINKEN N. Improvement of transmitter identification system for low SNR transients[A]. Electronics Letters[C]. 2004. 182-183.
  • 4SUN L, KINSNER W. Fractal segmentation of signal from noise for radio transmitter fingerprinting[A]. Electrical and Computer Engineering, IEEE Canadian Conference[C]. 1998. 561-564.
  • 5WANG X B, WU Y Y, CARON B. Transmitter identification using embedded spread spectrum sequences[A]. Communication Technology Proceedings, ICCT 2003, International Conference[C]. 2003. 1517-1523.
  • 6WANG X B, WU Y Y, CARON B. Transmitter identification using embedded pseudo random sequences[A]. Broadcasting, IEEE Transactions[C]. 2004.244-252
  • 7BRILLINGER D R, ROSENBLATT M. Computation and interpretation of kth order spectra[A]. Spectral Analysis of Time Series, B, Harris,Ed[C]. New York: Wiley, 1967. 189-232.
  • 8NIKIAS C L, RAGHUVEER M R. Bispectrum estimation: adigital signal processing framework[A]. Proc IEEE[C].1987. 869-891.
  • 9ZHANG X D, SHI Y, BAO Z. A new feature vector using selected bispectra for signal classification with application in radar target recognition[J]. IEEE Trans on Signal Processing, 200!,49(9): 1875-1885.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部