期刊文献+

a尺度多重双向正交小波包 被引量:1

Orthogonal Two-direction Multiwavelet Packets with Scale a
下载PDF
导出
摘要 多小波由于可以同时拥有许多好的性质,成为研究热点,出于多通道滤波器理论研究的需要,研究a尺度小波成为必需。最近,杨守志教授引入正交双向多分辨分析和正交双向小波的理论。本文在以上研究的基础上,利用向量截断法,建立了a尺度正交多重小波包的理论框架,文章的研究是正交双向小波和正交双向小波包研究的最一般形式的推广。 Multiwavelet can passes many good properties simultaneously, so it become the research cen- tre of wavelet theory recently. In order to study the theory of multi--channel filter bank, the study of a scale wavelet is needed. Professor shouzhi Yang introduced the theory of Multifesolution and two--direc- tion Multiresolution and two--direction orthogonal wavelet. Based on the formers ~ study, by the method of the cut--off ofvectors, In this paper , we develop the theory of orthogonal two--direction Multiwavelet packet with scale a. And oyr study is the most generalization of the study in orthogonal two--direction wavelet and orthogonal two--direction wavelet packet.
作者 吕军
出处 《新疆师范大学学报(自然科学版)》 2011年第4期83-88,共6页 Journal of Xinjiang Normal University(Natural Sciences Edition)
基金 新疆维吾尔自治区高校科研计划青年教师培育基金(XJEDU2009S67)
关键词 双向尺度函数 正交 双向多分辨分析 小波包 Two-- direction scaling functions orthogonal Two-- direction multiresolution analysis
  • 相关文献

参考文献9

  • 1COHEN A,DAUBECHIES I. on the instability of arbitary biorthogonal wavelet packet [J]. SIAM J Math Anal,1993,24(5) :1340--1354.
  • 2SHEN Z. Nontenaor product wavelet packets in L^2 (R^2) [J]. Math Anal, 1995,26(4):1061--1074.
  • 3CHUI C K, LJ C. Nononhogonal wavelets packet [J]. SIAM J Math Anal ,1993, 24(3) :712--755.
  • 4COIFMAN R R , MEYER Y , WICKERHAUSER M V. wavelet Analysis and signal processing. In wavelets and theirapplication [M]. Haston, Jones and Bartlett, MA,1992:145--150.
  • 5MARTIN M B , BELJ A E ,New image compression technique using multiwavelet packets [J] ,IEEE Trans Image Processing,2001,10(4) ,500--511.
  • 6WANG Y . Subdlivision schemes and refinement equations with nonnegative masks [J], Approx Theory, 2001,113 (2) :207--220.
  • 7ZHOU X L Subdivision Scheme with nonnegative masks [J]. Math Comp, 2005,74(250) :819--839.
  • 8YANG S Z, Biorthogonal two-- direction refinablefunction and two-- direction wavelet [J] , Appl Math comput, 2006,182 : 1717-- 1724.
  • 9李岚.正交双向小波包[J].纺织高校基础科学学报,2009,22(3):299-302. 被引量:5

二级参考文献7

  • 1杨守志,李尤发.具有高逼近阶和正则性的双向加细函数和双向小波[J].中国科学(A辑),2007,37(7):779-795. 被引量:30
  • 2COIFMAN R R, MEYER Y. Signal processing and compression with wavelet packets [ C ]// Orogress in Wavelet Analysis and Applications. Toulouse : 1992,77-93.
  • 3MARTIN M B, BELL A E. New image compression technique using multiwavelet packets [J]. JEEE Trans Image Processing, 2001,10(4) :500-511.
  • 4WANG Y. Subdivision schemes and refinement equations with nonnegative masks [ J]. J Approx Theory,2001,113 (2) :207- 220.
  • 5ZHOU X L. Subdivision schemes and refinement equations with nonnegative masks [ J ]. Math Comp,2005,74 (250) :819- 839.
  • 6YANG S Z. Biorthogonal two-direction refinable function and two-direction wavelet [ J]. Appl Math Comput, 2006, 182: 1 717-1 724.
  • 7YANG S Z,Li Y F. Two-direction refinable functions and two-directlon wavelets with dilation factor m[J]. Appl Math Comput, 2007, 188 : 1908 -1920.

共引文献4

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部