摘要
为克服预测神经网络输入值对网络输出预测值贡献程度基本等同的缺陷,提出一种信息熵加权的神经网络智能预测方法。提出信息熵权值的计算方法和延时重构的加权前处理方法,并以Elman神经网络为基础,构建基于信息熵加权Elman神经网络的预测模型。烟气轮机状态趋势预测实例表明,基于信息熵加权Elman神经网络预测方法的预测效果较好,为状态趋势预测提供了一种新方法。
In order to overcome the deficiency of basically the same probability contribution of neural network input to output predicted,an intelligent prediction method is proposed based on information entropy weighted neural network.The information entropy weight calculation method and pre-treatment of delay reconstruction are provided,taking Elman neural network as the basis to construct prediction model of information entropy weighted Elman neural network.Condition trend prediction results of the flue gas turbine shows that the proposed new method has better prediction effect with higher prediction precision and real time performance.
出处
《北京信息科技大学学报(自然科学版)》
2011年第6期26-29,共4页
Journal of Beijing Information Science and Technology University
基金
国家自然科学基金项目(50975020)
北京市属高等学校人才强教计划资助项目(PHR201106132)
北京信息科技大学学校科研基金项目(1125048)
关键词
趋势预测
神经网络
信息熵加权
延迟重构
trend prediction
neural network
information entropy weighted
delay reconstruction