摘要
文研究一类位相较多项式更一般的振荡奇异积分算子.在积分核Ω∈Llog^+L(S^(n-1))的条件下,建立了该类算子在加权L^P空间的有界性.
In this paper, we study the weighted Lp estimates (1 〈 p 〈 ∞) for the oscillatory singular integral operator given by Tf(x)=p.v.∫Rn e^iФ(x,y)b(|x-y|)Ω(x-y)/|x-y|^n f(y)dy.The phase function Ф has the form Ф(x,y)=^l∑k=0 Pk(x)Фk(y-x),where Pk is a real polynomial on R^n, Фk is a real homogeneous function on Rn and is analytic on S^n-1. Ω is homogeneous of degree zero and ∫S^n-1Ω(x')dσ(x')=0, b is a bounded variation function on [0, ∞). We show that if Ω∈Llog^+L(S^n-1),then T is bounded on Lpw, provided w satisfies a condition similar to the Ap condition but involves rectangles arising from a covering of a star-shaped set related to Ω.
出处
《数学研究》
CSCD
2011年第4期325-335,共11页
Journal of Mathematical Study
基金
supported by the NNSF of China(11071200)
the NSF of Fujian Province of China(2010J01013)
关键词
振荡奇异积分
粗糙核
加权估计
oscillatory singular integral
rough kernel
weights