期刊文献+

一类脉冲分数阶半线性泛函微分方程的弱解的存在性(英文)

Existence of Mild Solutions for Impulsive Fractional Order Semilinear Functional Differential Equations
下载PDF
导出
摘要 在本文中,我们通过利用线性算子的解析半群理论和不动点定理对一类脉冲分数阶半线性泛函微分方程的弱解的存在性进行讨论. In this paper, we use the analytic method to prove the existence of mild solution equations in a Banach space. semigroup theory of linear operators and fixed point for impulsive fractional order functional differential
出处 《数学研究》 CSCD 2011年第4期336-346,共11页 Journal of Mathematical Study
基金 supported by the National Nature Science Foundation of China (No.11071001) the Foundation of Education Department of Anhui province(KJ2011B167,KJ2010B217) the Natural Science Foundation of Huangshan University(No.2010xkj014)
关键词 弱解 脉冲分数阶半线性泛函微分方程 BANACH不动点定理 解析半群 Mild solution Impulsive fractional order semilinear functional differential equations Banach fixed point theorem Analytic semigroup.
  • 相关文献

参考文献1

二级参考文献9

  • 1Bielicki A.Une remark Sur La methods be Banach Caccioppolitikhanov dans la theorie de equation differentiebles ordinaries.Bull de L'academic polonaise des sciences,Ser Sci cl As.4,1975
  • 2Miller K S,Ross B.An Introduction to the Fractional Calculus and Fractional Differential Equations.New York:Wiley,1993
  • 3Samko S G,Kilbas A A,Marichev O I.Fractional Integral and Derivatives (Theorey and Applications).Switzerland:Gordon and Breach,1993
  • 4Kiryakova V.Generalized Fractional Calculus and Applications.Longman,Ser Pitman Ress Note in Math No 301.Harlow,1994
  • 5Podlubny I.Fractional Differential Equations,Mathematics in Science and Engineering.Vol 198.New york,London,Toronto:Academic Press,1999
  • 6Aleroev T S.The Sturm-Loiuville problem for a second order ordinary differential equation with fractional derivatives in the lower terms (Russian).Differential'nye Uravneniya,1982,18(2):341-342
  • 7Zhang Shuqin.The existence of a positive solution for a nonlinear fractional differential equation.J Math Anal Appl,2000,252:804-812
  • 8Zhang Shuqin.Positive solution for some class of nonlinear fractional differential equation.J Math Anal Appl,2003,278(1):136-148
  • 9O'Regan D.Some general existence principles and results for (ψ(y'))' = q(t)f(t,y,y'),0 < t < 1.SIAM J Math Anal,1993,24:648-668

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部