期刊文献+

三角范畴的连接结构

The Adjacent Structures on Triangulated Categories
下载PDF
导出
摘要 文章考虑三角范畴的连接结构.证明了若余t-结构与可裂t-结构是左连接的,则t-结构的心有足够多的投射对象.进一步地,如果三角范畴有Serre函子,则心也有足够多的内射对象.由此,说明了存在余t-结构与遗传Abel范畴的有界导出范畴上的标准t-结构左连接的充要条件是遗传Abel范畴有足够多的投射对象.若余t-结构与可裂t-结构是右连接的,则有对偶的结论. In this paper, we consider the adjacent structure on triangulated categories. If the co-t-structure is left adjacent to a splitting t-structure, the heart of t-structure has enough projective objects. Moreover, if the triangulated category has serre functor, the heart also has enough injective objects. For this reason, there is a co-t-structure which is left adjacent to the stander t-structure on the derived category of a hereditary abelian category if and only if the hereditary abelian category has enough projective objects. The consequence is dual to the case of the right adjacent.
出处 《数学研究》 CSCD 2011年第4期379-386,共8页 Journal of Mathematical Study
基金 福建省教育厅A类资助项目(JA10256)
关键词 常余t-结构 可裂t-结构 co-t-structure the splitting t-structure hearts
  • 相关文献

参考文献6

  • 1Beilinson A, Bernstein J, Deligne P. Faisceaux pervers. Analyse et topologie sur les espaces singuliers, 1982, 100: 1-172.
  • 2刘宏锦,陈娟.三角范畴的有界t-结构与遗传Abel范畴[J].厦门大学学报(自然科学版),2008,47(3):305-307. 被引量:2
  • 3Bondarko M. V. Weight structures for triangulated categories: weight filtrations, weight spectral sequences and weight complexes(for motives and in general). Journal of K-theory, 2010, 6(3):387-504.
  • 4Pauksztello D. Compact corigid objects in triangulated categories and co-t-structures. Central European Journal of Mathematics, 2008, 6(1):25-42.
  • 5Happel D. Auslander-Reiten triangles in derived categories of finite-dimensional algebra. Proc. Amer. Soc., 1991, 112(3):641-648.
  • 6Reiten I, Van den Bergh. Noetherian hereditary abelian categories satisfying Serre duality. J. Amer. Math. Soc, 2002, 15(2): 295-366.

二级参考文献5

  • 1Beilinson A, Bernstein J, Deligne P. Faiseeaux pervers, astrisque [J]. Analyse et Topologie Sur Les Espaees Singuliers, 1982 , 100:1 - 172.
  • 2Happel D. Triangulated categories in the representation theories of finite dimensional algebra[C]//Lecture Notes in Math, New York: Cambridge University Press, 1988.
  • 3Reiten I, Van den Bergh. Noetherian hereditary abelian categories satisfying Serre duality[J]. J Amer Math Soc, 2002,15:295- 366.
  • 4Dragan Militia. Lectures on derived categories[EB/OL]. http://www. math. utah. edu/milicic/dercat. pdf.
  • 5Happel D. On the derived category of a finite-dimensional algebra[J]. Comment Math Helv, 1987,62:339- 389.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部